Randomized Algorithms
Tutorial Sheet 3

1. (a) For two independent random variables X and Y, show that $\text{Var}[X - Y] = \text{Var}[X] + \text{Var}[Y]$.
 (b) For a geometric random variable X with parameter p, calculate $\text{E}[X^3]$.

2. (This question is based on Section 5.2.2 in the book. Please attempt this question before reading that section, if you haven’t already done so.) Consider a specialised sorting problem where we know the items to be sorted are natural numbers from some bounded range $[0, 2^k)$, for some $k \geq 1$. These integers are represented by length k binary strings. We are going to perform a “bucket sort”, using a collection of initially-empty “buckets” (extendable arrays or lists). The buckets are defined with respect to “short” binary numbers of length m (substantially smaller than k), this being the “number of prefix bits”. We have a bucket for each individual bit string $b \in \{0, 1\}^m$. The idea is to first do a linear scan of the inputs to be sorted, using their m-bit prefix to throw them into the correct bucket. Later the individual buckets are sorted using a standard sorting algorithm of (at most) quadratic running-time (such as Bubblesort or Insertion sort).

Algorithm $\text{BucketSort}(a_1, \ldots, a_n)$

(a) Do a linear scan of the inputs, adding a_i to the bucket matching its first m bits.
(b) for every $b \in \{0, 1\}^m$ do
(c) Sort bucket b with any sorting algorithm that runs in quadratic time.

We want to analyze the running time of BucketSort for random inputs. The first step takes time linear in the number of buckets, 2^m, as well as in the number of inputs, n. Show that if the inputs are n uniformly at random strings of length k, and we choose the prefix-length so that $m = \lceil \log(n) \rceil$, then the expected running-time of BucketSort is linear in n.

3. Consider a function $F : \{0, 1, \ldots, n - 1\} \rightarrow \{0, 1, \ldots, m - 1\}$ and suppose we know that for $0 \leq x, y \leq n - 1$, $F((x + y) \mod n) = (F(x) + F(y)) \mod m$. The only way we have to evaluate $F(\cdot)$ is to examine the values in an array of length n where the $F(\cdot)$ values have been stored (with entry i holding the value of $F(i)$). Unfortunately, a system failure has corrupted up to a $1/5$-fraction of the entries of the array, so we do not have reliable values in all positions.

Describe a simple randomized algorithm that, given an input $z \in \{0, \ldots, n - 1\}$, outputs a value that equals $F(z)$ with probability at least $1/2$. Your algorithm should guarantee this $1/2$ probability of being correct for every value of z, and regardless of which specific array entries were corrupted. Your algorithm should use as few lookups and as little computation as possible. Justify the $1/2$ correctness guarantee.

Suppose you are allowed to repeat your initial algorithm three times before you return a result. What should you do in this case? Justify your answer.

Kousha Etessami