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1. (This is Question 6.1 in the course textbook [MU].)

Consider the following problem: we are given as input a k-CNF boolean formula with m
clauses, over n boolean variables x1, . . . , xn, and where every clause has exactly k literals.

(a) Give a Las Vegas algorithm that finds a truth assignment to the variables that satisfies
at least m(1 − 2−k) clauses. Analyze the expected running time of the algorithm (and
in particular show that it runs in expected polynomial time).

(b) Give a derandomized algorithm, using the method of conditional expectations.

2. (This is Question 6.3 in the course textbook [MU].)

Given as n-vertex undirected graph G = (V, E), with V = {1, . . . , n}, consider the following
randomized method for generating an independent set of vertices in G. (Recall that an
independent set I ⊆ V is a set of vertices no two of which have an edge between them.).

For each vertex i ∈ V, let di ∈ N denote the degree of vertex i (i.e., the number of edges
incident on vertex i). For any permutation σ of the vertices V, (in other words, for any
sequentially ordered listing σ of the n numbers {1, . . . , n}), let S(σ) ⊆ V be the set of vertices
defined as follows:

S(σ) = {i ∈ V | every neighbor of i in G occurs after i in the permutation σ }

(a) Show that S(σ) is an independent set of G = (V, E), for any permutation σ of V.

(b) Describe a randomized algorithm for generating a u.a.r. random permutation σ of V.
Show that the expected size of S(σ) for such a random permutation σ is given by:

n∑
i=1

1

di + 1

(c) Use this to prove that G must have an independent set of size at least
∑n
i=1

1
di+1

.

3. In lectures, we only covered the “symmetric” case of the Lovasz Local Lemma, where the
probability of all bad events Ei is upper bounded by the same probability p. We did this
because for many applications of the Local Lemma the symmetric case suffices.

Here is a general, asymmetric, form of the Lovasz Local Lemma (described in Section 6.9 of
the textbook), which allows different upper bounds on the probability of each bad event Ei:

Theorem. (Thm 6.17 in the textbook) Let E1, . . . , En be a set of events, and let G = (V, E)
be a dependency graph for these events. Suppose there exists x1, . . . , xn ∈ (0, 1) such that for
all 1 ≤ i ≤ n,

Pr[Ei] ≤ xi
∏

(i,j)∈E

(1− xj)

1



Then

Pr(

n⋂
i=1

Ei) ≥
n∏
i=1

(1− xi) > 0 . �

Consider a variant of the more basic (symmetric) Lovasz Local Lemma, which we covered in
lectures, with the following slight modification:

• replace the condition “ 4dp ≤ 1 ” with the condition “ e · p(d+ 1) ≤ 1 ”.

Here e = 2.71828 . . . denotes the base of the natural logarithm.

(a) Firstly, observe that in cases of a dependency graph with maximum out-degree d ≥ 3,
the condition e · p(d + 1) ≤ 1 is actually the less stringent assumption, meaning it is
implied by the assumption 4dp ≤ 1.

(b) Secondly, show that the modified version of the symmetric Lovasz Local Lemma, with
the condition e·p(d+1) ≤ 1, can be derived as a special case of the general (asymmetric)
Lovasz Local Lemma (Thm 6.17) re-stated above.
(Hint. You may use the following general Fact: for any y ≥ 1,(

1−
1

y+ 1

)y
≥ 1
e
. )
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