Lecture Outline

- Problems with experience replay
- Asynchronous methods for deep RL
- Deep actor-critic methods
- Deep deterministic policy gradient
- Debugging deep RL
Recap: DQN
Deep Q-Network (DQN):

- Approximate state-action values using a neural network

- Stabilise training by:
 - Sampling batches from experience replay buffer
 - Using separate network to compute target values

- Further optimisation by:
 - Double DQN to reduce overestimation of Q-values
 - Prioritised replay to increase likelihood of sampling valuable experience
Problems of Experience Replay Buffer

- Requires large storage for replay buffer (e.g. Atari game requires \(\approx 56 \text{GB of RAM} \))
- Use of replay buffer requires off-policy method (why?)
- Not straightforward handling of multi-step returns (why?)
Problems of Experience Replay Buffer

• Requires large storage for replay buffer
 (e.g. Atari game requires \(\approx 56\text{GB} \) of RAM)

• Use of replay buffer requires off-policy method (why?)

• Not straightforward handling of multi-step returns (why?)

Is there an alternative approach to break correlations of consecutive experience?
Asynchronous Training
Asynchronous Framework

• Create \(n \) parallel "worker" threads with own environment copies and shared global network
• Each worker interacts independently with its environment
• Asynchronous updates: Periodically, each worker updates the global network parameters based on its local experiences
Create n parallel “worker” threads with own environment copies and shared global network.
Asynchronous Framework

• Create n parallel “worker” threads with own environment copies and shared global network

• Each worker interacts independently with its environment
Asynchronous Framework

- Create n parallel “worker” threads with own environment copies and shared global network
- Each worker interacts independently with its environment
- Asynchronous updates: Periodically, each worker updates the global network parameters based on its local experiences
Benefits of Asynchronous Framework

- Asynchronous updating is another way of breaking correlation in samples
 ⇒ Means we don’t need replay buffer!
• Asynchronous updating is another way of breaking correlation in samples
 ⇒ Means we don’t need replay buffer!

• Better handling of sequential data: can use on-policy and multi-step returns
Benefits of Asynchronous Framework

- Asynchronous updating is another way of breaking correlation in samples
 ⇒ Means we don’t need replay buffer!
- Better handling of sequential data: can use on-policy and multi-step returns
- Runs on normal multi-threaded CPUs
Benefits of Asynchronous Framework

• Asynchronous updating is another way of breaking correlation in samples
 ⇒ Means we don’t need replay buffer!

• Better handling of sequential data: can use on-policy and multi-step returns

• Runs on normal multi-threaded CPUs

• Alternative: parallel, vectorised environments
Asynchronous 1-Step Q-Learning [Mnih et al., 2016]

repeat
 Take action a with ϵ-greedy policy based on $Q(s, a; \theta)$
 Receive new state s' and reward r
 $y = \begin{cases} r & \text{for terminal } s' \\ r + \gamma \max_{a'} Q(s', a'; \theta^-) & \text{for non-terminal } s' \end{cases}$
 Accumulate gradients wrt θ: $d\theta \leftarrow d\theta + \frac{\partial(y - Q(s, a; \theta))^2}{\partial \theta}$
 $s = s'$
 $T \leftarrow T + 1$ and $t \leftarrow t + 1$
 if $T \mod I_{target} == 0$ then
 Update the target network $\theta^- \leftarrow \theta$
 end if
 if $t \mod I_{AsyncUpdate} == 0$ or s is terminal then
 Perform asynchronous update of θ using $d\theta$.
 Clear gradients $d\theta \leftarrow 0$.
 end if
until $T > T_{max}$

θ for value network

θ^- for target network

θ/θ^- are global shared between workers
More workers (parallel threads) lead to faster learning
More workers (parallel threads) lead to faster learning

- Workers explore different parts of the environment
- Workers can use different exploration policies (e.g. ϵ-values)
Deep Actor-Critic
Recap: Actor-Critic Algorithm

Objective: Find parameters θ maximising $J = V^{\pi_\theta}(s)$
Recap: Actor-Critic Algorithm

Objective: Find parameters θ maximising $J = V^{\pi_\theta}(s)$

- Estimate gradient $\nabla_\theta J$ using the **policy gradient theorem**:
 \[
 \nabla_\theta J = \mathbb{E}_{(s,a,r,s') \sim B}[R_s \nabla_\theta \log \pi_\theta(a|s)]
 \]
Recap: Actor-Critic Algorithm

Objective: Find parameters θ maximising $J = V^{\pi_\theta}(s)$

• Estimate gradient $\nabla_\theta J$ using the policy gradient theorem:

$\nabla_\theta J = \mathbb{E}_{(s,a,r,s') \sim B} [R_s \nabla_\theta \log \pi_\theta(a|s)]$

• Approximate R_s, the return at state s, with a critic \hat{V}_w with parameters w

$\nabla_\theta J = \mathbb{E}_{(s,a,r,s') \sim B} [(r + \hat{V}_w(s')) \nabla_\theta \log \pi_\theta(a|s)]$

Train the critic by minimising the TD-error $L(w) = \mathbb{E}_{s \sim B} [(R_s - \hat{V}_w(s))^2]$
Recap: Actor-Critic Algorithm

Objective: Find parameters θ maximising $J = V^{\pi_\theta}(s)$

- Estimate gradient $\nabla_\theta J$ using the **policy gradient theorem**:

$$\nabla_\theta J = \mathbb{E}_{(s,a,r,s') \sim B}[R_s \nabla_\theta \log \pi_\theta(a|s)]$$

- Approximate R_s, the return at state s, with a critic \hat{V}_w with parameters w

$$\nabla_\theta J = \mathbb{E}_{(s,a,r,s') \sim B}[(r + \hat{V}_w(s'))\nabla_\theta \log \pi_\theta(a|s)]$$

Train the critic by minimising the TD-error $L(w) = \mathbb{E}_{s \sim B}[(R_s - \hat{V}_w(s))^2]$

- Subtract a baseline function in order to reduce the variance of the estimation

$$\nabla_\theta J = \mathbb{E}_{(s,a,r,s') \sim B}[(r + \hat{V}_w(s') - \hat{V}_w(s))\nabla_\theta \log \pi_\theta(a|s)]$$
Asynchronous Advantage Actor-Critic (A3C) [Mnih et al., 2016]

repeat
 Reset gradients: \(d\theta \leftarrow 0 \) and \(d\theta_v \leftarrow 0 \).
 Synchronize thread-specific parameters \(\theta' = \theta \) and \(\theta'_v = \theta_v \).
 \(t_{start} = t \)
 Get state \(s_t \)
 repeat
 Perform \(a_t \) according to policy \(\pi(a_t|s_t; \theta') \)
 Receive reward \(r_t \) and new state \(s_{t+1} \)
 \(t \leftarrow t + 1 \)
 \(T \leftarrow T + 1 \)
 until terminal \(s_t \) or \(t - t_{start} == t_{max} \)
 \(R = \begin{cases} 0 & \text{for terminal } s_t \\ V(s_t; \theta'_v) & \text{for non-terminal } s_t \end{cases} \) // Bootstrap from last state
 for \(i \in \{t - 1, \ldots, t_{start}\} \) do
 \(R \leftarrow r_i + \gamma R \)
 Accumulate gradients wrt \(\theta' \): \(d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i|s_i; \theta')(R - V(s_i; \theta'_v)) \)
 Accumulate gradients wrt \(\theta'_v \): \(d\theta_v \leftarrow d\theta_v + \partial (R - V(s_i; \theta'_v))^2 / \partial \theta'_v \)
 end for
 Perform asynchronous update of \(\theta \) using \(d\theta \) and of \(\theta_v \) using \(d\theta_v \).
until \(T > T_{max} \)
Entropy Regularisation

- **Entropy** of a stochastic policy

\[
H[\pi(a|s)] = \mathbb{E}_{a \sim \pi(a|s)}[\ - \log \pi(a|s)] = - \sum_a \pi(a|s) \log \pi(a|s)
\]

The entropy is maximised when the policy distribution is uniform.
Entropy Regularisation

- **Entropy** of a stochastic policy

\[H[\pi(a|s)] = \mathbb{E}_{a \sim \pi(a|s)}[-\log \pi(a|s)] = -\sum_a \pi(a|s) \log \pi(a|s) \]

The entropy is maximised when the policy distribution is uniform

- Add an entropy regularisation in A3C

\[L_{actor} = -(R - V(s)) \log \pi(a|s) - \beta H[\pi(a|s)] \]

Encourage exploration by maximising entropy while minimising policy loss
Figures showing the results of asynchronous methods compared to traditional ones in Beamrider, Breakout, and Pong environments. The graphs display the score achieved over time (in hours) for different algorithms: DQN, 1-step Q, 1-step SARSA, n-step Q, and A3C. The comparison highlights the performance improvements and convergence rates for each method.
Deep Deterministic Policy Gradient
For example, consider a domain in which we control an autonomous car with action space \(A = \{\text{steer} \in [-\pi, \pi], \text{throttle} \in [-1, 1]\} \).
• For example, consider a domain in which we control an autonomous car with action space $A = \{\text{steer} \in [-\pi, \pi], \text{throttle} \in [-1, 1]\}$

• We could discretize the action space
 - *what is the disadvantage?*
Reinforcement Learning in Continuous Action Spaces

- For example, consider a domain in which we control an autonomous car with action space $A = \{\text{steer} \in [-\pi, \pi], \text{throttle} \in [-1, 1]\}$
- We could discretize the action space
 - what is the disadvantage?
- Can we use A3C?
 - How?
For example, consider a domain in which we control an autonomous car with action space $A = \{\text{steer} \in [-\pi, \pi], \text{throttle} \in [-1, 1]\}$

We could discretize the action space
- what is the disadvantage?

Can we use A3C?
- How?

How do we compute $\text{argmax}_a Q(s, a)$ in continuous action spaces?
Deterministic Policy Gradient

1. Extension of policy gradient to deterministic policies $\mu : S \rightarrow \mathbb{R}^{|A|}$

$$\nabla_{\theta \mu} V(s_0) = \mathbb{E}_{s \sim d(s)} \left[\nabla_a Q(s, \mu(s|\theta^\mu)|\theta^Q) \nabla_{\theta \mu} \mu(s) \right]$$
Deterministic Policy Gradient

- Extension of policy gradient to \textit{deterministic} policies \(\mu : S \rightarrow \mathbb{R}^{|A|} \)

\[
\nabla_{\theta \mu} V(s_0) = \mathbb{E}_{s \sim d(s)} \left[\nabla_a Q(s, \mu(s|\theta^\mu)|\theta^Q) \nabla_{\theta \mu} \mu(s) \right]
\]

- It assumes continuous actions. The actor loss is:

\[
L_a = -Q(s, \mu(s|\theta^\mu))
\]
Deterministic Policy Gradient

- Extension of policy gradient to *deterministic* policies $\mu : S \rightarrow \mathbb{R}^{|A|}$

$$\nabla_{\theta \mu} V(s_0) = \mathbb{E}_{s \sim d(s)} \left[\nabla_a Q(s, \mu(s|\theta^\mu)|\theta^Q) \nabla_{\theta \mu} \mu(s) \right]$$

- It assumes continuous actions. The actor loss is:

$$L_a = -Q(s, \mu(s|\theta^\mu))$$

- Can be extended to discrete environments using mechanisms that produce differentiable samples from categorical distribution (e.g. *Gumbel-Softmax*)
Deterministic Policy Gradient

• Extension of policy gradient to deterministic policies $\mu : S \rightarrow \mathbb{R}^{|A|}$

$$\nabla_{\theta\mu} V(s_0) = \mathbb{E}_{s \sim d(s)} \left[\nabla_a Q(s, \mu(s|\theta^\mu)|\theta^Q) \nabla_{\theta\mu} \mu(s) \right]$$

• It assumes continuous actions. The actor loss is:

$$L_a = -Q(s, \mu(s|\theta^\mu))$$

• Can be extended to discrete environments using mechanisms that produce differentiable samples from categorical distribution (e.g. Gumbel-Softmax)

• Train the critic by minimising the TD-error:

$$L_c = \frac{1}{2} \left(r + \gamma Q_{\text{target}}(s', \mu_{\text{target}}(s'|\theta^\mu')|\theta^Q') - Q(s, a|\theta^Q) \right)^2$$
Deterministic Policy Gradient – Diagram

State

Environment

Actor

Action

Critic

Reward

TD error

Q-values

Maximize Q-values

BackProp
Q-learning uses ϵ-greedy

A3C samples from a Softmax distribution and exploration is encouraged through an entropy-based term in the actor’s loss

DDPG adds random noise to the output of the actor (e.g. Gaussian noise, Ornstein–Uhlenbeck noise)

$$a = \mu(s|\theta^\mu) + \mathcal{N}$$
Deep Deterministic Policy Gradient (DDPG) [Lillicrap et al., 2016]

\[\text{for episode } = 1, M \text{ do}\]
\[\text{Initialize a random process } \mathcal{N} \text{ for action exploration}\]
\[\text{Receive initial observation state } s_1\]
\[\text{for } t = 1, T \text{ do}\]
\[\text{Select action } a_t = \mu(s_t|\theta^\mu) + \mathcal{N}_t \text{ according to the current policy and exploration noise}\]
\[\text{Execute action } a_t \text{ and observe reward } r_t \text{ and observe new state } s_{t+1}\]
\[\text{Store transition } (s_t, a_t, r_t, s_{t+1}) \text{ in } R\]
\[\text{Sample a random minibatch of } N \text{ transitions } (s_i, a_i, r_i, s_{i+1}) \text{ from } R\]
\[\text{Set } y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^\mu')|\theta^{Q'})\]
\[\text{Update critic by minimizing the loss: } L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^{Q}))^2\]
\[\text{Update the actor policy using the sampled policy gradient:}\]
\[\nabla_{\theta^\mu} J \approx \frac{1}{N} \sum_i \nabla_a Q(s, a|\theta^{Q})|_{s=s_i, a=\mu(s_i)} \nabla_{\theta^\mu} \mu(s|\theta^\mu)|_{s_i}\]

\[\text{Update the target networks:}\]
\[\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau) \theta^{Q'}\]
\[\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau) \theta^{\mu'}\]
Sample Efficiency of DDPG [Wang et al., 2017]

DDPG converges in 1M steps, A3C requires 150M steps
Debugging Deep RL
Debugging Deep RL Algorithms

- Start with simple environments that are quick to train on
- Log everything (Frequently)!
 - In particular, keep track of:
 - Performance
 - Exploration hyperparameters
 - Loss function components
 - Gradients (Ensure they do not explode)
- Save your logs in a format that can be used for further processing
- Use tools that automatically displays your logs as Figures, e.g. Wandb, Tensorboard
Debugging Deep RL Algorithms

- Policy Gradient
 - Policy should not get too close to deterministic policies early on
 - Track the magnitude of the policy gradient loss and entropy loss

- Q-Learning based methods
 - Track learning rate schedules
 - Track exploration schedule
 - Check magnitude of the gradients

- Visualize the policies during evaluation

Going Forward ...

- ~ 3 weeks left for the coursework
- Labs this week (W7) and next week (W8)
 - Come with questions prepared!
- If you are unfamiliar with PyTorch, check out the provided notebook from the labs and further documentation and tutorials on https://pytorch.org
Any Questions?