Lecture Outline

- Curse of dimensionality and generalisation
- Value function approximation
- Stochastic gradient descent
- Linear value functions and feature construction
- Semi-gradient TD control
Curse of Dimensionality

Theory so far has assumed:

- **Unlimited space**: can store value function as table
- **Unlimited data**: many (infinite) visits to all state-action pairs

In practice these assumptions are usually violated, because...

Curse of Dimensionality:

- Number of states grows *exponentially* with number of state variables
- If state described by k variables with values in $\{1, \ldots, n\}$, then $O(n^k)$ states

Go: 10^{170} states

Hydrogen atoms: 10^{80}
Two problems...

- Not enough memory to store value function as table.

\[v(s) / q(s; a) \]

- Need compact representation of value function. (But sometimes can be enough to store only partial value function; e.g. MCTS.)

- No data (or not enough data) to estimate return in each state.

- Many states may never be visited.

- Need to generalise observations to unknown state-action pairs.
Compact Value Functions and Generalisation

Two problems...

Not enough memory to store value function as table

- Tabular $v(s)/q(s, a)$ use storage proportional to $|S|$
- Need **compact representation** of value function
 (But sometimes can be enough to store only partial value function; e.g. MCTS)
Compact Value Functions and Generalisation

Two problems...

Not enough memory to store value function as table

- Tabular $v(s)/q(s, a)$ use storage proportional to $|S|$
- Need compact representation of value function
 (But sometimes can be enough to store only partial value function; e.g. MCTS)

No data (or not enough data) to estimate return in each state

- Many states may never be visited
- Need to generalise observations to unknown state-action pairs
Blue circle must move to red goal
- Agent uses optimal policy (shortest path)

Suppose we have return estimates (steps to go) for locations S1–S6
- e.g. $v(S5) = -3$, $v(S4) = -6$, $v(S2) = -31$

We have no data for locations S7 and S8 (not visited yet)
- Can we estimate $v(S7)$ and $v(S8)$ based on other return estimates?
Replace tabular value function with *parameterised function*:

\[
\hat{v}(s, w) \approx v_\pi(s)
\]

\[
\hat{q}(s, a, w) \approx q_\pi(s, a)
\]

\(w \in \mathbb{R}^d\) is parameter ("weight") vector

e.g. linear function, neural network, regression tree, ...

- **Compact**: number of parameters \(d\) much smaller than \(|S|\)
- **Generalises**: changing one parameter value may change value estimate of many states/actions
Learning a value function is a form of supervised learning:

Examples are pairs of states and return estimates, \((S_t, U_t)\), e.g.

- **MC**: \(U_t = G_t \)
- **TD(0)**: \(U_t = R_{t+1} + \gamma \hat{V}(S_{t+1}, w_t) \)
- **n-step TD**: \(U_t = R_{t+1} + \cdots + \gamma^{n-1}R_{t+n} + \gamma^n \hat{V}(S_{t+n}, w_{t+n-1}) \)
Desired properties in supervised learning method:

- **Incremental updates**

 update \(w \) using only partial data, e.g. most recent \((S_t, U_t)\) or subset
Desired properties in supervised learning method:

- **Incremental updates**

 update w using only partial data, e.g. most recent (S_t, U_t) or subset

- **Ability to handle noisy targets**

 e.g. different MC updates G_t for same state S_t
Desired properties in supervised learning method:

- **Incremental updates**
 update w using only partial data, e.g. most recent (S_t, U_t) or subset

- **Ability to handle noisy targets**
 e.g. different MC updates G_t for same state S_t

- **Ability do handle non-stationary targets**
 e.g. changing target policy, bootstrapping

\Rightarrow If \hat{v}/\hat{q} differentiable, **stochastic gradient descent** is suitable method
Gradient Descent

- Let $J(\mathbf{w})$ be differentiable function of \mathbf{w}

- Gradient of $J(\mathbf{w})$ is

 $$\nabla J(\mathbf{w}) = \left(\frac{\partial J(\mathbf{w})}{\partial w_1}, \ldots, \frac{\partial J(\mathbf{w})}{\partial w_d} \right)^T$$

- To find local minimum of $J(\mathbf{w})$, adjust \mathbf{w} in negative direction of gradient

 $$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{1}{2} \alpha \nabla J(\mathbf{w}_t)$$

- α is step-size parameter
 convergence requires standard α-reduction
Objective: find parameter vector \mathbf{w} by minimising \textit{mean-squared error} between approximate value $\hat{v}(s, \mathbf{w})$ and true value $v_\pi(s)$

$$J(\mathbf{w}) = \mathbb{E}_\pi [(v_\pi(s) - \hat{v}(s, \mathbf{w}))^2]$$
Stochastic Gradient Descent

Objective: find parameter vector \mathbf{w} by minimising *mean-squared error* between approximate value $\hat{v}(s, \mathbf{w})$ and true value $v_\pi(s)$

$$J(\mathbf{w}) = \mathbb{E}_\pi [(v_\pi(s) - \hat{v}(s, \mathbf{w}))^2]$$

- Gradient descent finds local minimum:
 $$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{1}{2} \alpha \nabla J(\mathbf{w}_t)$$
 $$= \mathbf{w}_t + \alpha \mathbb{E}_\pi [(v_\pi(s) - \hat{v}(s, \mathbf{w}_t)) \nabla \hat{v}(s, \mathbf{w}_t)]$$
Stochastic Gradient Descent

Objective: find parameter vector \mathbf{w} by minimising mean-squared error between approximate value $\hat{v}(s, \mathbf{w})$ and true value $v_\pi(s)$

$$J(\mathbf{w}) = \mathbb{E}_\pi [(v_\pi(s) - \hat{v}(s, \mathbf{w}))^2]$$

- Gradient descent finds local minimum:
 $$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{1}{2} \alpha \nabla J(\mathbf{w}_t)$$
 $$= \mathbf{w}_t + \alpha \mathbb{E}_\pi [(v_\pi(s) - \hat{v}(s, \mathbf{w}_t)) \nabla \hat{v}(s, \mathbf{w}_t)]$$

- Stochastic gradient descent samples the gradient:
 $$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [U_t - \hat{v}(S_t, \mathbf{w}_t)] \nabla \hat{v}(S_t, \mathbf{w}_t)$$
Stochastic gradient descent samples the gradient:

$$w_{t+1} = w_t + \alpha [U_t - \hat{\nabla}(S_t, w_t)] \nabla \hat{\nabla}(S_t, w_t)$$ \hspace{1cm} (1)
Stochastic Gradient Descent — Convergence

Stochastic gradient descent *samples* the gradient:

\[w_{t+1} = w_t + \alpha [U_t - \hat{v}(S_t, w_t)] \nabla \hat{v}(S_t, w_t) \]

(1)

- \(w_t \) will converge to **local optimum** under standard \(\alpha \)-reduction and if \(U_t \) is unbiased estimate \(\mathbb{E}_\pi[U_t|S_t] = v_\pi(S_t) \)

\(\Rightarrow \) MC update is unbiased but TD update is biased (why?)
Stochastic Gradient Descent — Convergence

Stochastic gradient descent samples the gradient:

\[w_{t+1} = w_t + \alpha [U_t - \hat{V}(S_t, w_t)] \nabla \hat{V}(S_t, w_t) \] \hspace{2cm} (1)

- \(w_t \) will converge to local optimum under standard \(\alpha \)-reduction and if \(U_t \) is unbiased estimate \(\mathbb{E}_\pi[U_t|S_t] = v_\pi(S_t) \)

\[\Rightarrow \text{MC update is unbiased but TD update is biased (why?)} \]

- Note: (1) is not a true TD gradient because \(U_t \) also depends on \(w \)

\[U_t = R_{t+1} + \gamma \hat{V}(S_{t+1}, w) \]

Hence, we call it semi-gradient TD
Semi-gradient TD(0) for Policy Evaluation

Input: the policy π to be evaluated
Input: a differentiable function $\hat{v} : S^+ \times \mathbb{R}^d \rightarrow \mathbb{R}$ such that $\hat{v}(\text{terminal}, \cdot) = 0$
Algorithm parameter: step size $\alpha > 0$
Initialize value-function weights $w \in \mathbb{R}^d$ arbitrarily (e.g., $w = 0$)

Loop for each episode:
 Initialize S
 Loop for each step of episode:
 Choose $A \sim \pi(\cdot|S)$
 Take action A, observe R, S'
 $w \leftarrow w + \alpha [R + \gamma \hat{v}(S', w) - \hat{v}(S, w)] \nabla \hat{v}(S, w)$
 $S \leftarrow S'$
 until S is terminal
Linear value function approximation:

\[\hat{v}(s, w) = w^\top x(s) = \sum_{i=1}^{d} w_i x_i(s) \]

- \(x(s) = (x_1(s), ..., x_d(s))^\top \) is feature vector of state \(s \)
- Simple gradient: \(\nabla \hat{v}(s, w) = \left(\frac{\partial w^\top x}{\partial w_1}, \ldots, \frac{\partial w^\top x}{\partial w_d} \right)^\top = x(s) \)
- Gradient update: \(w_{t+1} = w_t + \alpha [U_t - \hat{v}(S_t, w_t)] x(S_t) \)
Linear Value Function Approximation

Linear value function approximation:

\[\hat{V}(s, w) \doteq w^\top x(s) = \sum_{i=1}^{d} w_i x_i(s) \]

- \(x(s) = (x_1(s), ..., x_d(s))^\top \) is feature vector of state \(s \)
- Simple gradient: \(\nabla \hat{V}(s, w) = \left(\frac{\partial w^\top x}{\partial w_1}, \ldots, \frac{\partial w^\top x}{\partial w_d} \right)^\top = x(s) \)
- Gradient update: \(w_{t+1} = w_t + \alpha [U_t - \hat{V}(S_t, w_t)] x(S_t) \)

In linear case, there is only one optimum!

\(\Rightarrow \) MC gradient updates converge to global optimum
\(\Rightarrow \) TD gradient updates converge near global optimum (TD fixed point)

See Tutorial 6
Feature Vectors

Remember:
State must be Markov

$x(s) = \begin{pmatrix} x\text{-pos}(s) \\ y\text{-pos}(s) \end{pmatrix}$

$x(s) = \begin{pmatrix} \theta(s) \\ \theta\text{-vel}(s) \\ x\text{-pos}(s) \\ \vdots \end{pmatrix}$
Exact representation:

\[x(s) = \begin{pmatrix} x\text{-pos}(s) \\ y\text{-pos}(s) \end{pmatrix} \]

Generalise with state aggregation:

- Partition states into disjoint sets \(S_1, S_2, \ldots \) with indicator functions \(x_k(s) = [s \in S_k]_1 \)

\[x(s) = \begin{pmatrix} \text{in-}S_1(s) \\ \text{in-}S_2(s) \\ \text{in-}S_3(s) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \]
State Aggregation

Exact representation:

\[x(s) = \begin{pmatrix} x\text{-}pos(s) \\ y\text{-}pos(s) \end{pmatrix} \]

Generalise with state aggregation:

- Partition states into disjoint sets \(S_1, S_2, \ldots \) with indicator functions \(x_k(s) = [s \in S_k]_1 \)

Special case: every state \(s \) has its own set \(S_s = \{s\} \)

\(\implies \) Same as tabular representation!
Coarse/Tile Coding

State aggregation generalises only within sets $S_1, S_2, ...$

- Allow generalisation *across* sets by allowing S_k to overlap
- e.g. coarse coding and tile coding

![Diagram](image-url)
Example: Random Walk

- States: numbered 1 to 1000, start at state 500
- Policy: randomly jump to one of 100 states to left, or one of 100 states to right
- If jump goes beyond 1/1000, terminates with reward \(-1/+1\)
- State aggregation: 10 groups of 100 states each
Random Walk: MC and TD Prediction

Linear gradient MC:

Approximate MC value \hat{v}

State distribution d

Value scale

-1 0 1

State

1000

Linear gradient TD:

Approximate TD value \hat{v}

True value v_π

Distribution scale

-1 0 1

After 100,000 episodes with $\alpha = 2 \times 10^{-5}$
Approximate Control in Episodic Tasks

- Estimate state-action values: \(\hat{q}(s, a, w) \approx q_\pi(s, a) \)

- For linear approx., features defined over states and action:
 \[
 \hat{q}(s, a, w) = \sum_{i=1}^{d} w_i x_i(s, a)
 \]

- Stochastic gradient descent:
 \[
 w_{t+1} = w_t + \alpha [U_t - \hat{q}(S_t, A_t, w_t)] \nabla \hat{q}(S_t, A_t, w_t)
 \]
Approximate Control in Episodic Tasks

- Estimate state-action values: \(\hat{q}(s, a, w) \approx q_\pi(s, a) \)

- For linear approx., features defined over states and action:
 \[
 \hat{q}(s, a, w) = \sum_{i=1}^{d} w_i x_i(s, a)
 \]

- Stochastic gradient descent:
 \[
 w_{t+1} = w_t + \alpha \left[U_t - \hat{q}(S_t, A_t, w_t) \right] \nabla \hat{q}(S_t, A_t, w_t)
 \]

 e.g. **Sarsa**: \(U_t = R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, w_t) \)

 Q-learning: \(U_t = R_{t+1} + \gamma \max_a \hat{q}(S_{t+1}, a, w_t) \)

 Expected Sarsa: \(U_t = R_{t+1} + \gamma \sum_a \pi(a|S_{t+1}) \hat{q}(S_{t+1}, a, w_t) \)
Episodic Semi-gradient Sarsa

Input: a differentiable action-value function parameterization \(\hat{q} : S \times A \times \mathbb{R}^d \to \mathbb{R} \)

Algorithm parameters: step size \(\alpha > 0 \), small \(\varepsilon > 0 \)

Initialize value-function weights \(\mathbf{w} \in \mathbb{R}^d \) arbitrarily (e.g., \(\mathbf{w} = \mathbf{0} \))

Loop for each episode:
- \(S, A \leftarrow \) initial state and action of episode (e.g., \(\varepsilon \)-greedy)

Loop for each step of episode:
 - Take action \(A \), observe \(R, S' \)
 - If \(S' \) is terminal:
 - \(\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[R - \hat{q}(S, A, \mathbf{w}) \right] \nabla \hat{q}(S, A, \mathbf{w}) \)
 - Go to next episode
 - Choose \(A' \) as a function of \(\hat{q}(S', \cdot, \mathbf{w}) \) (e.g., \(\varepsilon \)-greedy)
 - \(\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[R + \gamma \hat{q}(S', A', \mathbf{w}) - \hat{q}(S, A, \mathbf{w}) \right] \nabla \hat{q}(S, A, \mathbf{w}) \)
 - \(S \leftarrow S' \)
 - \(A \leftarrow A' \)
Example: Mountain Car with Linear Semi-Gradient Sarsa

STATES:
- car's position and velocity

ACTIONS:
- three thrusts: forward, reverse, none

REWARDS:
- always -1 until car reaches the goal

Episodic, No Discounting, $\gamma=1$

Semi-gradient Sarsa with linear approximation over 8 8x8 tilings

$\epsilon = 0$ (optimistic initial values $\hat{q}(s, a, w) = 0$)
Learned Action Values in Mountain Car

Cost-to-go:
\[- \max_a \hat{q}(s, a, w)\]
Mountain Car
Steps per episode
log scale
averaged over 100 runs

Learning Curves in Mountain Car
Convergence to Global Optimum in Episodic Control

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Tabular</th>
<th>Linear</th>
<th>Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC control</td>
<td>yes</td>
<td>chatter*</td>
<td>no</td>
</tr>
<tr>
<td>(semi-gradient) n-step Sarsa</td>
<td>yes</td>
<td>chatter*</td>
<td>no</td>
</tr>
<tr>
<td>(semi-gradient) n-step Q-learning</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Chatters near optimal solution because optimal policy may not be representable under value function approximation
Deadly Triad

Risk of divergence arises when the following three are combined:

1. Function approximation
2. Bootstrapping
3. Off-policy learning

Possible fixes:

- Use importance sampling to warp off-policy distribution into on-policy distribution
- Use gradient TD methods which follow true gradient of projected Bellman error (see book)
Required (RL book):

- Chapter 9 (9.1–9.5)
 (Box “Proof of Convergence of Linear TD(0)” in Sec 9.4 is not examined)
- Chapter 10 (10.1)
- Chapter 11 (11.1)

Optional:

- Remaining sections of chapters