
Reinforcement Learning
Building a Complete RL System

Samuel Garcin
10 February 2023

Lecture Outline

• What is Gym?
• How to implement your own environment?
• How to implement a RL algorithm?
• How to evaluate your results?
• Demonstration

1

OpenAI Gym

What is Gym? (Brockman et al., 2016)

• Open source interface for sequential decision processes
• Originally developed by OpenAI Research Lab, currently
maintained by the Farama Foundation

• Collection of RL environments
• Standardised interface for RL environments

Can be installed with

pip install gym

2

https://openai.com/
https://gymnasium.farama.org/

Lots of Interesting Environments! (Brockman et al., 2016)

3

And many more... (Vinyals et al., 2017; Johnson et al., 2016; Kauten, 2018)

4

Gym Interface

• gym.make(<environment_name>) −→ gym environment
Create a gym environment

• env.reset() −→ observation
Resets environment for a new episode

• env.step(action) −→ observation, reward, done, info
Take an action and observe new information

• env.render()
Render a visualisation of the current environmental state

• env.close()
Close created environment

5

Gym Example Snippet

Gym control flow

env = gym.make('CartPole-v0')
obs = env.reset()
done = False
while not done:

env.render()
action = agent.choose_action(obs)
next_obs, reward, done, info = env.step(action)
obs = next_obs

env.close()

6

Example: Taxi-v3 Environment

• Goal: Pickup passenger and drop it off at
destination

• Reward: +20 for successful delivery, −1 at each
timestep, −10 for illegal move

• Challenge: navigate gridworld

• Gridworld with 5× 5 map
• R, G, Y, B - locations
B - passenger
Y - destination
- taxi

• Observations ∈ [0, 499]
including taxi row and col,
pass. and dest. index

• Actions:
South, North, East, West,
Pick, Drop

7

Example: Taxi-v3 Environment

• Goal: Pickup passenger and drop it off at
destination

• Reward: +20 for successful delivery, −1 at each
timestep, −10 for illegal move

• Challenge: navigate gridworld

• Gridworld with 5× 5 map
• R, G, Y, B - locations
B - passenger
Y - destination
- taxi

• Observations ∈ [0, 499]
including taxi row and col,
pass. and dest. index

• Actions:
South, North, East, West,
Pick, Drop

7

Example: Taxi-v3 Environment

• Goal: Pickup passenger and drop it off at
destination

• Reward: +20 for successful delivery, −1 at each
timestep, −10 for illegal move

• Challenge: navigate gridworld

• Gridworld with 5× 5 map
• R, G, Y, B - locations
B - passenger
Y - destination
- taxi

• Observations ∈ [0, 499]
including taxi row and col,
pass. and dest. index

• Actions:
South, North, East, West,
Pick, Drop

7

Example: Taxi-v3 Environment

• Goal: Pickup passenger and drop it off at
destination

• Reward: +20 for successful delivery, −1 at each
timestep, −10 for illegal move

• Challenge: navigate gridworld

• Gridworld with 5× 5 map
• R, G, Y, B - locations
B - passenger
Y - destination
- taxi

• Observations ∈ [0, 499]
including taxi row and col,
pass. and dest. index

• Actions:
South, North, East, West,
Pick, Drop

7

Taxi Environment Step I

South

nobs, r, done, _ = env.step(a):

o = 45 a=0 (South)−−−−−−−−→ 〈nobs = 154, r = −1, done = False〉

8

Taxi Environment Step I

South

nobs, r, done, _ = env.step(a):

o = 45 a=0 (South)−−−−−−−−→ 〈nobs = 154, r = −1, done = False〉

8

Taxi Environment Step II

West

nobs, r, done, _ = env.step(a):

o = 45 a=3 (West)−−−−−−−→ 〈nobs = 45, r = −1, done = False〉

9

Taxi Environment Step II

West

nobs, r, done, _ = env.step(a):

o = 45 a=3 (West)−−−−−−−→ 〈nobs = 45, r = −1, done = False〉

9

Taxi Environment Step III

Pick/ Drop

nobs, r, done, _ = env.step(a):

o = 45 a=4/5 (Pick/ Drop)−−−−−−−−−−−−−→ 〈nobs = 45, r = −10, done = False〉

10

Taxi Environment Step III

Pick/ Drop

nobs, r, done, _ = env.step(a):

o = 45 a=4/5 (Pick/ Drop)−−−−−−−−−−−−−→ 〈nobs = 45, r = −10, done = False〉

10

Implement your RL Agent

Recap: SARSA

On-Policy TD Control: Sarsa
−→ learn qπ and improve π while following π

Updates: Q(St,At)← Q(St,At) + α [Rt+1 + γQ(St+1,At+1)− Q(St,At)]

Exploration: ε-greedy policy π

11

Recap: SARSA

On-Policy TD Control: Sarsa
−→ learn qπ and improve π while following π

Updates: Q(St,At)← Q(St,At) + α [Rt+1 + γQ(St+1,At+1)− Q(St,At)]

Exploration: ε-greedy policy π

11

SARSA Agent Class Structure

• __init__ Initialise agent and Q-table as dictionary mapping
(obs, act) -> q-val

• act: ε-greedy policy

• learn: Update Q-table given new experience

Q(St,At)← Q(St,At) + α [Rt+1 + γQ(St+1,At+1)− Q(St,At)]

• schedule_hyperparameters: Update hyperparameters given training progress

12

And now in Code ... act

Epsilon-greedy Action Selection

def act (se l f , obs) :
ac t_va l s = [s e l f . q_table [(obs , act)] for act in range (s e l f .
n_acts)]
max_val = max (ac t_va l s)
max_acts = [idx for idx , ac t_va l in enumerate (ac t_va l s) i f
ac t_va l == max_val]

i f random . random () < s e l f . eps i lon :
return random . randint (0 , s e l f . n_acts − 1)

else :
return random . choice (max_acts)

13

And now in Code ... learn

SARSA Q-Update

def learn(self, obs, action, reward, n_obs, n_action, done):
target_value = reward + self.gamma * (1 - done) * self.

q_table[(n_obs, n_action)]
self.q_table[(obs, action)] += self.alpha * (

target_value - self.q_table[(obs, action)]
)
return self.q_table[(obs, action)]

Q(St,At)← Q(St,At) + α [Rt+1 + γQ(St+1,At+1)− Q(St,At)]

14

And now in Code ... schedule_hyperparameters

SARSA ε-Scheduling

def schedule_hyperparameters(self, timestep, max_timestep):
max_deduct, decay = 0.95, 0.07
self.epsilon = 1.0 - (min(1.0, timestep/(decay *

max_timestep))) * max_deduct

0 100 200 300 400 500

Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

E
p
s
ilo

n

SARSA decay=0.5

SARSA decay=0.2

SARSA decay=0.07

SARSA decay=0.01

0 100 200 300 400 500

Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

E
p
s
ilo

n

SARSA max_deduct=1.0

SARSA max_deduct=0.95

SARSA max_deduct=0.5

SARSA max_deduct=0.1

15

Evaluate your Results

Why do We Evaluate in the First Place?

• It gives our approach credibility
• Empirical evaluation is no proof, but can give strong indication about the
strengths and limitations of an approach (when done right!)

How to do it right?

16

Why do We Evaluate in the First Place?

• It gives our approach credibility
• Empirical evaluation is no proof, but can give strong indication about the
strengths and limitations of an approach (when done right!)

How to do it right?

16

What to Evaluate?

Evaluation Returns
• Plot mean returns over multiple runs
• Visualise standard deviation or confidence
interval

0 2000 4000 6000 8000 10000
Episodes

100

80

60

40

20

0

20

M
ea

n
E

va
l R

et
ur

ns

Average Returns on Taxi-v3

Sarsa
Taxi threshold = 8

Which returns do we plot?

• Execute multiple evaluation runs with ε = 0 at fixed intervals
• Evaluation does not involve any learning!

17

What to Evaluate?

Evaluation Returns
• Plot mean returns over multiple runs
• Visualise standard deviation or confidence
interval

0 2000 4000 6000 8000 10000
Episodes

100

80

60

40

20

0

20

M
ea

n
E

va
l R

et
ur

ns

Average Returns on Taxi-v3

Sarsa
Taxi threshold = 8

Which returns do we plot?

• Execute multiple evaluation runs with ε = 0 at fixed intervals
• Evaluation does not involve any learning!

17

What to Evaluate?

Evaluation Returns
• Plot mean returns over multiple runs
• Visualise standard deviation or confidence
interval

0 2000 4000 6000 8000 10000
Episodes

100

80

60

40

20

0

20

M
ea

n
E

va
l R

et
ur

ns

Average Returns on Taxi-v3

Sarsa
Taxi threshold = 8

Which returns do we plot?

• Execute multiple evaluation runs with ε = 0 at fixed intervals
• Evaluation does not involve any learning!

17

Keep Track of Everything!

Hyperparameters
• Track hyperparameters, here ε-decay
• Try various values in a grid- or random-search and find good configuration

0 100 200 300 400 500

Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

E
p

s
ilo

n

SARSA decay=0.5

SARSA decay=0.2

SARSA decay=0.07

SARSA decay=0.01

0 100 200 300 400 500

Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

E
p

s
ilo

n

SARSA max_deduct=1.0

SARSA max_deduct=0.95

SARSA max_deduct=0.5

SARSA max_deduct=0.1

18

SARSA Gridsearch over Learning Rate α for Taxi-v3

0 2000 4000 6000 8000 10000
Episodes

200

175

150

125

100

75

50

25

0

M
ea

n
E

va
l R

et
ur

ns

Average Returns on Taxi-v3 (LR=0.9)

Sarsa
Taxi threshold = 8

Figure 1: α = 0.9

0 2000 4000 6000 8000 10000
Episodes

200

175

150

125

100

75

50

25

0

M
ea

n
E

va
l R

et
ur

ns

Average Returns on Taxi-v3 (LR=0.3)

Sarsa
Taxi threshold = 8

Figure 2: α = 0.3

0 2000 4000 6000 8000 10000
Episodes

200

175

150

125

100

75

50

25

0

M
ea

n
E

va
l R

et
ur

ns

Average Returns on Taxi-v3 (LR=0.7)

Sarsa
Taxi threshold = 8

Figure 3: α = 0.7

0 2000 4000 6000 8000 10000
Episodes

200

175

150

125

100

75

50

25

0

M
ea

n
E

va
l R

et
ur

ns

Average Returns on Taxi-v3 (LR=0.2)

Sarsa
Taxi threshold = 8

Figure 4: α = 0.2

0 2000 4000 6000 8000 10000
Episodes

200

175

150

125

100

75

50

25

0

M
ea

n
E

va
l R

et
ur

ns

Average Returns on Taxi-v3 (LR=0.5)

Sarsa
Taxi threshold = 8

Figure 5: α = 0.5

0 2000 4000 6000 8000 10000
Episodes

200

175

150

125

100

75

50

25

0

M
ea

n
E

va
l R

et
ur

ns

Average Returns on Taxi-v3 (LR=0.1)

Sarsa
Taxi threshold = 8

Figure 6: α = 0.1 19

SARSA Learning Rate α Gridsearch Overview

0 2000 4000 6000 8000 10000
Episodes

200

175

150

125

100

75

50

25

0

M
ea

n
E

va
l R

et
ur

ns

Average Returns on Taxi-v3 (Shading = half std)

Sarsa - lr=0.9
Sarsa - lr=0.7
Sarsa - lr=0.5
Sarsa - lr=0.3
Sarsa - lr=0.2
Sarsa - lr=0.1
Taxi threshold = 8

Figure 7: Gridsearch overview over learning rate α with half standard deviation as shading

20

Common Pitfalls (1)

”But it worked last time!”

• It’s not enough to make it work once!
• Meaningful evaluation achieves consistent performance over multiple
randomised runs

• Most RL algorithms have random components (e.g. ε-greedy policies)

21

Common Pitfalls (1)

”But it worked last time!”

• It’s not enough to make it work once!
• Meaningful evaluation achieves consistent performance over multiple
randomised runs

• Most RL algorithms have random components (e.g. ε-greedy policies)

21

Common Pifalls (2) (Henderson, 2018; Colas et al., 2019)

Is plotting the mean return, even with confidence interval, enough?

Which one is better?

It’s actually the same method!

Apparently, it’s not enough! −→ Statistical hypothesis testing (Colas et al., 2019)
and effective statistical evaluation (Agarwal et al., 2021)

22

Common Pifalls (2) (Henderson, 2018; Colas et al., 2019)

Is plotting the mean return, even with confidence interval, enough?

Which one is better?

It’s actually the same method!

Apparently, it’s not enough! −→ Statistical hypothesis testing (Colas et al., 2019)
and effective statistical evaluation (Agarwal et al., 2021)

22

Common Pifalls (2) (Henderson, 2018; Colas et al., 2019)

Is plotting the mean return, even with confidence interval, enough?

Which one is better?

It’s actually the same method!

Apparently, it’s not enough! −→ Statistical hypothesis testing (Colas et al., 2019)
and effective statistical evaluation (Agarwal et al., 2021)

22

Common Pifalls (2) (Henderson, 2018; Colas et al., 2019)

Is plotting the mean return, even with confidence interval, enough?

Which one is better? It’s actually the same method!

Apparently, it’s not enough! −→ Statistical hypothesis testing (Colas et al., 2019)
and effective statistical evaluation (Agarwal et al., 2021)

22

Common Pifalls (2) (Henderson, 2018; Colas et al., 2019)

Is plotting the mean return, even with confidence interval, enough?

Which one is better? It’s actually the same method!

Apparently, it’s not enough! −→ Statistical hypothesis testing (Colas et al., 2019)
and effective statistical evaluation (Agarwal et al., 2021) 22

Common Pitfalls (3) (Bishop, 2019)

”Why should I use those random seeds? random already delivers random values!”

• Our goal with empirical evaluations is to make meaningful claims about the
implemented approach and achieve reproducible performance

• Random seeds allow us to fixate random behaviour
• Reproducibility is key for meaningful research

But NEVER choose/ tune your random seeds!

23

Common Pitfalls (3) (Bishop, 2019)

”Why should I use those random seeds? random already delivers random values!”

• Our goal with empirical evaluations is to make meaningful claims about the
implemented approach and achieve reproducible performance

• Random seeds allow us to fixate random behaviour
• Reproducibility is key for meaningful research

But NEVER choose/ tune your random seeds!

23

Common Pitfalls (3) (Bishop, 2019)

”Why should I use those random seeds? random already delivers random values!”

• Our goal with empirical evaluations is to make meaningful claims about the
implemented approach and achieve reproducible performance

• Random seeds allow us to fixate random behaviour
• Reproducibility is key for meaningful research

But NEVER choose/ tune your random seeds!

23

Common Pitfalls (3) (Bishop, 2019)

”Why should I use those random seeds? random already delivers random values!”

• Our goal with empirical evaluations is to make meaningful claims about the
implemented approach and achieve reproducible performance

• Random seeds allow us to fixate random behaviour
• Reproducibility is key for meaningful research

But NEVER choose/ tune your random seeds!

23

Demonstration

23

All code is available at https://github.com/uoe-agents/
Building-a-Complete-RL-System_Demonstration

23

https://github.com/uoe-agents/Building-a-Complete-RL-System_Demonstration
https://github.com/uoe-agents/Building-a-Complete-RL-System_Demonstration

Reading i

References

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C., and Bellemare, M. (2021). Deep
reinforcement learning at the edge of the statistical precipice. In Advances in
Neural Information Processing Systems, volume 34.

Bishop, D. (2019). Rein in the Four Horsemen of Irreproducibility. Nature, 568(7753).

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. (2016). OpenAI Gym.

24

Reading ii

Colas, C., Sigaud, O., and Oudeyer, P.-Y. (2019). A Hitchhiker’s Guide to Statistical
Comparisons of Reinforcement Learning Algorithms. arXiv preprint
arXiv:1904.06979.

Henderson, P. (2018). Reproducibility and Reusability in Deep Reinforcement
Learning. PhD thesis, McGill University Libraries.

Johnson, M., Hofmann, K., Hutton, T., and Bignell, D. (2016). The Malmo Platform for
Artificial Intelligence Experimentation. In IJCAI, pages 4246–4247.

Kauten, C. (2018). Super Mario Bros for OpenAI Gym. GitHub.

Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Vezhnevets, A. S., Yeo, M., Makhzani, A.,
Küttler, H., Agapiou, J., Schrittwieser, J., et al. (2017). Starcraft II: A new Challenge for
Reinforcement Learning. arXiv preprint arXiv:1708.04782.

25

Any questions about this lecture or the demonstration?

25

	OpenAI Gym
	Implement your RL Agent
	Evaluate your Results
	References

