Reinforcement Learning
Building a Complete RL System

Samuel Garcin
10 February 2023

-
\~ THE UNIVERSITY of EDINBURGH

&y informatics

Lecture Outline

What is Gym?

How to implement your own environment?

How to implement a RL algorithm?

How to evaluate your results?

Demonstration

OpenAl Gym

What is Gym? (Brockman et al., 2016)

e Open source interface for sequential decision processes

e Originally developed by OpenAl Research Lab, currently
maintained by the Farama Foundation

e Collection of RL environments
e Standardised interface for RL environments
Can be installed with

pip install gym

https://openai.com/
https://gymnasium.farama.org/

Lots of Interesting Environments! (Brockman et al., 2016)

And many more... (Vinyals et al., 2017; Johnson et al., 2016; Kauten, 2018)

Haemssae 177
[Juaierio 1477

HORLD TIME
397

MARTIO
Q00000 1 x00 1=-1

L

Gym Interface

e gym.make(<environment_name>) — gym environment
Create a gym environment

e env.reset() — observation
Resets environment for a new episode

e env.step(action) — observation, reward, done, info
Take an action and observe new information

e env.render()
Render a visualisation of the current environmental state

e env.close()
Close created environment

Gym Example Snippet

Gym control flow

env = gym.make('CartPole-v0')
obs = env.reset()
done = False
while not done:
env.render()
action = agent.choose_action(obs)
next_obs, reward, done, info = env.step(action)
obs = next_obs
env.close()

Example: Taxi-v3 Environment

e Gridworld with 5 x 5 map

e R, G, Y, B-locations
B - passenger
Y - destination
- taxi

Example: Taxi-v3 Environment

e Gridworld with 5 x 5 map

e R, G, Y, B-locations
B - passenger
Y - destination
- taxi

e Observations € [0, 499]
including taxi row and col,
pass. and dest. index

Example: Taxi-v3 Environment

e Gridworld with 5 x 5 map

e R, G, Y, B-locations
B - passenger
Y - destination
- taxi

e Observations € [0, 499]
including taxi row and col,
pass. and dest. index

e Actions:
South, North, East, West,
Pick, Drop

Example: Taxi-v3 Environment

e Gridworld with 5 x 5 map
e R, G, Y, B-locations
B - passenger
Y - destination
- taxi

e Observations € [0, 499]
including taxi row and col,

e Goal: Pickup passenger and drop it off at

destination pass. and dest. index
e Reward: +20 for successful delivery, —1ateach ° Actions:
timestep, —10 for illegal move South, North, East, West,
Pick, Drop

e Challenge: navigate gridworld

o
Q
s
n
)
c
Q
E
c
o
=
>
c
Ll
3
T

South

Taxi Environment Step |

nobs, r, done, _= env.step(a):
= h
0 — 45 2=0outh), (nobs =154, r = —1, done = False)

Taxi Environment Step I

Taxi Environment Step I

nobs, r, done, _= env.step(a):
0 = 45 222 MesY), (nobs =45, r = —1, done = False)

Taxi Environment Step I

Pick/ Drop

L 2

10

Taxi Environment Step I

nobs, r, done, _= env.step(a):

a=4/5 (Pick/ Drop)

(nobs =45, r = —10, done = False)

10

Implement your RL Agent

Recap: SARSA

On-Policy TD Control: Sarsa
— learn g, and improve = while following =

Updates: Q(St,At) — Q(St,At) + « [Rt L1 T Q(S‘ 1, At '\) — Q(St,At)]

Exploration: e-greedy policy

i

Recap: SARSA

On-Policy TD Control: Sarsa
— learn g, and improve = while following =

L

Updates: Q(St,At) — Q(St,At) + « [Rt 1T Q(S‘ 1, At '\) — Q(St,At)]

Exploration: e-greedy policy

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., e-greedy)
Q(S, A) < Q(S, A) + a[R +~Q(5", A') — Q(S, A)]
S+ S A+ A

until S is terminal

i

SARSA Agent Class Structure

e __init__ Initialise agent and Q-table as dictionary mapping

(obs, act) -> g-val
e act: e-greedy policy

e learn: Update Q-table given new experience

Q(St,At) < Q(St,At) + a[Rivr + vQ(Stq, Arer) — Q(St, Ar)]

e schedule_hyperparameters: Update hyperparameters given training progress

12

And now in Code ... act

Epsilon-greedy Action Selection

def act(self, obs):
act_vals = [self.qg_table[(obs, act)] for act in range(self.
n_acts)]
max_val = max(act_vals)
max_acts = [idx for idx, act_val in enumerate(act_vals) if
act_val == max_vall

if random.random() < self.epsilon:

return random.randint(0, self.n_acts — 1)
else:

return random.choice(max_acts)

And now in Code ... learn

SARSA Q-Update

def learn(self, obs, action, reward, n_obs, n_action, done):
target_value = reward + self.gamma * (1 - done) =* self.
q_table[(n_obs, n_action)]
self.q_table[(obs, action)] += self.alpha * (
target_value - self.q_table[(obs, action)]

)

return self.q_table[(obs, action)]

Q(St, Ar) < Q(St, Ar) + o — Q(St,A)]

14

And now in Code ... schedule_hyperparameters

SARSA e-Scheduling

def schedule_hyperparameters(self, timestep, max_timestep):
max_deduct, decay = 0.95, 0.07
self.epsilon = 1.0 - (min(1.0, timestep/(decay =
max_timestep))) * max_deduct

1.0 \ 10
0.8 0.8
- 06 —— SARSA decay=0.5 _06
2 SARSA decay=0.2 8
& SARSA decay=0.07 2
o w
04 SARSA decay=0.01 0.4

—— SARSA max_deduct=1.0
02 02 SARSA max_deduct=0.95

—— SARSA max_deduct=0.5

—— SARSA max_deduct=0.1

00 5 100 200 300 400 500 15

00 100 200 300 400 500
Timesteps

Timesteps

Evaluate your Results

Why do We Evaluate in the First Place?

e |t gives our approach credibility

e Empirical evaluation is no proof, but can give strong indication about the
strengths and limitations of an approach (when done right!)

Why do We Evaluate in the First Place?

e |t gives our approach credibility

e Empirical evaluation is no proof, but can give strong indication about the
strengths and limitations of an approach (when done right!)

How to do it right?

What to Evaluate?

Average Returns on Taxi-v3

Evaluation Returns 0
e Plot mean returns over multiple runs

e Visualise standard deviation or confidence
interval

Mean Eval Returns
!
IS
8

Sarsa
-~ Taxi threshold = 8

0 ‘ 2000 4000 6000 8000 10000
Episodes

What to Evaluate?

Average Returns on Taxi-v3

Evaluation Returns 0
e Plot mean returns over multiple runs

e Visualise standard deviation or confidence
interval

Mean Eval Returns
!
IS
8

Sarsa
-~ Taxi threshold = 8

0 ‘ 2000 4000 6000 8000 10000
Episodes

Which returns do we plot?

What to Evaluate?

Average Returns on Taxi-v3

Evaluation Returns 0
e Plot mean returns over multiple runs

e Visualise standard deviation or confidence
interval

Mean Eval Returns
IS
8

-80
Sarsa
-« Taxi threshold = 8
-100 !
0 2000 4000 6000 8000 10000
Episodes

Which returns do we plot?

e Execute multiple evaluation runs with e = 0 at fixed intervals

e Evaluation does not involve any learning!

Keep Track of Everything!

Hyperparameters
e Track hyperparameters, here e-decay
e Try various values in a grid- or random-search and find good configuration

1.0 10

0.8 0.8

—— SARSA decay=0.5 06

0.6
S SARSA decay=0.2 S
2 SARSA decay=0.07 2
| i}
0.4 SARSA decay=0.01 0.4
—— SARSA max_deduct=1.0
02 02 SARSA max_deduct=0.95
—— SARSA max_deduct=0.5
—— SARSA max_deduct=0.1
00 0 100 200 300 400 500 00 0 100 200 300 400 500
Timesteps Timesteps

SARSA Gridsearch over Learning Rate a

100

Mean Eval Returs

125

-150

175

200

Mean Eval Returs

Average Returns on Taxi-v3 (LR=0.9)

Figure 1: o =

00 6000
Episodes.

0.9

Tax threshold =8

8000

Average Returs on Taxi-v3 (LR=0.3)

10000

Figure 2: o

00 600
Episodes.

0

0.3

sarsa
Taxi threshold = 8

8000

10000

Mean Eval Returs

-150

-175

200

Mean Eval Retums

Average Returns on Taxi-v3 (LR=0.7)

for Taxi-v3

2000 4000 6000

Episodes

Figure 3: v

0.7

“Taxithreshoid = 8

8000

Average Returns on Taxi-va (LR=0.2)

10000

Figure & o

00 6000
Episodes

0.2

sarsa
Taxi threshold = 8

8000

10000

.
Lo
.

Average Returns on Taxi-v3 (LR=0.5)

2000 4000
Episodes.

Figure 5: o

6000

0.5

arsa
Taxi threshold =8

8000

Average Returns on Taxi-v3 (LR=0.1)

10000

Figure 6:

60
Episodes.

00

0.1

sarsa
Taxi threshold = 8

8000

10000

SARSA Learning Rate « Gridsearch Overview

Average Returns on Taxi-v3 (Shading = half std)

0 = 4 T~
~ ;/ \\ \/
-25
-50
P
£
5 -75
3
4
©
s
frr
< -100
@
3
=
-125
A /
\ —— Sarsa-Ir=0.9
-150 Sarsa - Ir=0.7
Sarsa - Ir=0.5
—— Sarsa-Ir=0.3
-175 Sarsa - Ir=0.2
—— Sarsa-Ir=0.1
+ Taxi threshold = 8
-200 v
0 2000 4000 6000 8000 10000
Episodes

Figure 7: Gridsearch overview over learning rate o with half standard deviation as shading

20

Common Pitfalls (1)

"But it worked last time!”

21

Common Pitfalls (1)

"But it worked last time!”

e |t's not enough to make it work once!

e Meaningful evaluation achieves consistent performance over multiple
randomised runs

e Most RL algorithms have random components (e.g. e-greedy policies)

21

Common Pifalls (2) (Henderson, 2018; Colas et al., 2019)

Is plotting the mean return, even with confidence interval, enough?

22

Common Pifalls (2) (Henderson, 2018; Colas et al., 2019)

Is plotting the mean return, even with confidence interval, enough?

50001

5

30001

o e

Average Return

1000

000 025 050 075 100 125 150 175 200
Timesteps x10°

22

Common Pifalls (2) (Henderson, 2018; Colas et al., 2019)

Is plotting the mean return, even with confidence interval, enough?

50001

5

30001

o e

Average Return

1000

000 025 050 075 100 125 150 175 200
Timesteps x10°

Which one is better?

22

Common Pifalls (2) (Henderson, 2018; Colas et al., 20

Is plotting the mean return, even with confidence interval, enough?

50007 HalfCheetah-v1 (TRPO, Different Random Seeds)

5

30001

o e

Average Return

1000

"""" Random Average (5 runs)

Random Average (5 runs)

000 025 050 075 100 125 150 175 200
Timesteps x10°

Which one is better? It's actually the same method!

22

Common Pifalls (2) (Henderson, 2018; Colas et al., 2019)

Is plotting the mean return, even with confidence interval, enough?

HalfCheetah-vl (TRPO, Different Random Seeds)

50007

5

30001

o ‘ ».,w»\,w\».v-_,‘,

Average Return

1000

"""" Random Average (5 runs)

Random Average (5 runs)

000 025 050 075 100 125 150 175 200
Timesteps x10°

Which one is better? It's actually the same method!

Apparently, it's not enough! — Statistical hypothesis testing (Colas et al., 2019)
and effective statistical evaluation (Agarwal et al., 2021) 2

Common Pitfalls (3) (Bishop, 2019)

I"

"Why should | use those random seeds? random already delivers random values

23

Common Pitfalls (3) (Bishop, 2019)

"Why should | use those random seeds? random already delivers random values!”

e QOur goal with empirical evaluations is to make meaningful claims about the
implemented approach and achieve reproducible performance

e Random seeds allow us to fixate random behaviour

e Reproducibility is key for meaningful research

23

Common Pitfalls (3) (Bishop, 2019)

"Why should | use those random seeds? random already delivers random values!”

e QOur goal with empirical evaluations is to make meaningful claims about the
implemented approach and achieve reproducible performance

e Random seeds allow us to fixate random behaviour

e Reproducibility is key for meaningful research

But NEVER choose/ tune your random seeds!

23

Common Pitfalls (3) (Bishop, 2019)

"Why should | use those random seeds? random already delivers random values!”

e QOur goal with empirical evaluations is to make meaningful claims about the
implemented approach and achieve reproducible performance

e Random seeds allow us to fixate random behaviour

e Reproducibility is key for meaningful research

But NEVER choose/ tune your random seeds!

Reinin the four horsemen of
irreproducibility

Dorothy Bishop describes how threats to reproducibility, recognized
- but unaddressed for decades, might finally be brought under control.

Dorothy Bishop =

23

Demonstration

All code is available at https://github.com/uoe-agents/
Building-a-Complete-RL-System_Demonstration

https://github.com/uoe-agents/Building-a-Complete-RL-System_Demonstration
https://github.com/uoe-agents/Building-a-Complete-RL-System_Demonstration

References

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C,, and Bellemare, M. (2021). Deep
reinforcement learning at the edge of the statistical precipice. In Advances in
Neural Information Processing Systems, volume 34,

Bishop, D. (2019). Rein in the Four Horsemen of Irreproducibility. Nature, 568(7753).

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. (2016). OpenAl Gym.

24

Colas, C, Sigaud, 0., and Oudeyer, P-Y. (2019). A Hitchhiker's Guide to Statistical
Comparisons of Reinforcement Learning Algorithms. arXiv preprint
arXiv:1904.06979.

Henderson, P. (2018). Reproducibility and Reusability in Deep Reinforcement
Learning. PhD thesis, McGill University Libraries.

Johnson, M., Hofmann, K., Hutton, T, and Bignell, D. (2016). The Malmo Platform for
Artificial Intelligence Experimentation. In [JCAl, pages 4246—4247.

Kauten, C. (2018). Super Mario Bros for OpenAl Gym. GitHub.

Vinyals, O., Ewalds, T, Bartunoy, S., Georgiey, P, Vezhnevets, A. S,, Yeo, M., Makhzani, A.,
Kittler, H., Agapiou,)., Schrittwieser, J., et al. (2017). Starcraft Il: A new Challenge for
Reinforcement Learning. arXiv preprint arXiv:1708.04782.

25

Any questions about this lecture or the demonstration?

	OpenAI Gym
	Implement your RL Agent
	Evaluate your Results
	References

