RL 2022/23 Self-Check for Coding Proficiency

1 Purpose

The purpose of this document is to serve as a self-check to evaluate your coding proficiency and
familiarise yourself with the expected coding skills required for the RL coursework. As part of the
coursework, you will need to complete the following tasks:

e Install [Python3 and standard ML libraries (e.g. Numpy and PyTorch)

e Create a virtual environment to organise dependencies (not required, but strongly suggested)

e Apply advanced knowledge of Python, including object-oriented programming (classes, con-
structors, functions), basic data structures (dictionaries, lists, Numpy arrays) and Python
syntax

For latter exercises of the coursework implementing deep RL algorithms, you will be required
to use PyTorch. We will provide a brief introduction to the basic PyTorch knowledge needed, so
no prior knowledge is required.

2 Coursework Overview

For the coursework, you will need to provide implementations of RL algorithms within a predefined
codebase that we provide. The codebase implements a general interface for RL algorithms and
you will be tasked to implement specific functions in it. You will need to familiarise yourself with
the provided codebase, in particular understand its required interface (make sure you understand
the expected inputs and outputs of each function) and complete the implementation of specified
functions. For some questions, besides implementing the required parts of an algorithm, we will also
evaluate the performance of your algorithm in specified environments (such as in the Taxi example
below). For these performance evaluations, we will use your implementation of the RL algorithm
with hyperparameters specified (and ideally optimised) by you and grade your submission using
(1) correctness of the implementation of the algorithm and (2) performance marks where stated.

3 Example Question: Tabular-RL SARSA

This question serves as an example for a coding task in the RL coursework. We suggest you go
through this question carefully and evaluate whether you feel sufficiently confident in your coding
skills to solve such a question. Please note that we will teach you all the required algorithmic
details in the course. For this example you are not expected nor required to understand the RL
algorithm below.

SARSA For this question, you will need to implement the RL algorithm SARSA. You can find
details on the algorithm in Section 6.4 of the RL book (pages 129-131).

Taxi-v3 We train the algorithm in the OpenAl Gym Taxi-v3 environment. In this environment,
visualised in Figure |1} the goal is to navigate a taxi (yellow box - empty taxi; green box - taxi
with passenger) to a passenger (blue location), pick it up and drop it off at the destination (purple
location) in a grid-world. The task is successfully completed once the passenger is dropped off at
its destination or failed after a maximum number of steps (which can be set as a hyperparameter).
After each step, a numerical feedback in the form of a reward is provided. A reward of 420 is
provided for successfully delivering the passenger to its destination, -10 for executing the actions
pickup or dropoff illegally, i.e. trying to pickup a passenger at a location where no passenger is
located or attempting to drop off without having a passenger in the taxi, and otherwise a reward



https://www.python.org
https://numpy.org/
https://pytorch.org/
http://www.incompleteideas.net/book/RLbook2018.pdf
https://www.gymlibrary.dev/environments/toy_text/taxi/

of -1 is provided at each step. Hence, the task consists of learning to navigate the grid-world and
bringing the passenger as quickly to its target destination as possible.

Figure 1: Rendering of two Taxi-v3 environment steps

Implementation Use the codebase provided and implement the following functions. All of the
functions that you need to implement are located in the sarsa.py file.

1. In the abstract Agent class, implement the following function:

e act, where you must implement the e-greedy exploration policy for action selection:

n(s) = argmax, Q(s,a) with probability 1 — ¢
" | random action otherwise

2. To implement SARSA, you must implement the following function in the SARSAAgent class:

e learn, where you must implement SARSA updates:
Q (51;a1) < Q (s, a1) + a[repr +YQ (Se41, a11) — Q (8¢, )]

All other functions apart from the aforementioned ones should not be changed.

Provided codebase You can find example code for this example question in our code repository.
The example code includes the general framework as well as an implemented solution for the
SARSA RL algorithm with the following files:

e sarsa.py: Includes abstract Agent class and SARSA class. This is where the SARSA algorithm
would need to be implemented. You will receive such files with missing implementation of
required functions in the coursework.

e sarsa solution.py: This is a copy of the previous file including a possible solution to the
required functions. You can find solutions under respective comments ### SOLUTION BELOW
##4.

e train sarsa.py: Includes creation of the environment and agent before starting the training
procedure with frequent evaluations of the RL algorithm. This is the main script you execute
to train and evaluate your agent. You will only need to adjust the hyperparameters within
this script, found in the CONFIG dictionary.

e requirements.txt: List of required Python requirements needed to execute the code. These
can be installed using pip install -r requirements.txt.

4 Demonstrations

As part of the RL course, there will be several drop-in sessions where you will have the op-
portunity to ask questions about the coursework. Furthermore, there will be a tutorial lec-
ture delivered by the TAs on how to implement and evaluate a RL system. A demonstration
with more code will be provided as part of this lecture before the coursework is released. You
can already find last year’s tutorial lecture resources under https://github.com/uoe-agents/
Building-a-Complete-RL-System_Demonstration which will be updated for this year’s tutorial
lecture.


https://github.com/uoe-agents/Building-a-Complete-RL-System_Demonstration/tree/main/coding_self_check
https://github.com/uoe-agents/Building-a-Complete-RL-System_Demonstration
https://github.com/uoe-agents/Building-a-Complete-RL-System_Demonstration

	Purpose
	Coursework Overview
	Example Question: Tabular-RL SARSA
	Demonstrations

