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Lecture Outline

• What is Gymnasium?
• How to implement your own environment?
• How to implement a RL algorithm?
• How to evaluate your results?
• Demonstration
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Gymnasium



What is Gymnasium? (Towers et al., 2023)

• Open source interface for sequential decision processes
• A fork of OpenAI Gym which was originally developed by
OpenAI Research Lab (Brockman et al., 2016)

• Currently maintained by the Farama Foundation
• Collection of RL environments
• Standardised interface for RL environments

Can be installed with

pip install gymnasium as gym
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https://openai.com/
https://gymnasium.farama.org/


Lots of Interesting Environments! (Towers et al., 2023)
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And many more... (Vinyals et al., 2017; Johnson et al., 2016; Kauten, 2018)
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Gym Interface

• gym.make(<env_name>, render_mode=...) −→ gym environment
Create a gym environment

• env.reset() −→ observation, info
Resets environment for a new episode

• env.step(action) −→ observation, reward, terminated, truncated, info
Take an action and observe new information

• env.render()
Render a visualisation of the current environmental state

• env.close()
Close created environment

5



Gym Example Snippet

Gym control flow

env = gym . make ( ’ Taxi−v3 ’ , render_mode= ’human ’ )
obs , in fo = env . reset ( )
done = False
while not done :

act ion = agent . choose_action ( obs )
next_obs , reward , terminated , truncated , in fo = env . step ( act ion )
done = terminated or truncated
obs = next_obs

env . c lose ( )
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Example: Taxi-v3 Environment

• Gridworld with 5× 5 map
• Four designated pick-up and drop-off locations (Red, Green, Yellow and Blue)

• Observations ∈ [0, 499] including taxi row and col, pass. and dest. index
• Actions: [South, North, East, West, Pick, Drop]
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Example: Taxi-v3 Environment

• Goal: Pickup passenger and drop it off at destination
• Reward: +20 for successful delivery, −1 at each timestep, −10 for illegal move
• Challenge: navigate gridworld
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Taxi Environment Step I

South

nobs, r, term, trunc, _ = env.step(a):

o = 42 a=0 (South)−−−−−−−−→ 〈nobs = 142, r = −1, term = False, trunc = False〉
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Taxi Environment Step II

West

nobs, r, term, trunc, _ = env.step(a):

o = 45 a=3 (West)−−−−−−−→ 〈nobs = 45, r = −1, term = False, trunc = False〉
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Taxi Environment Step II
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Taxi Environment Step III

Pick/ Drop

nobs, r, term, trunc, _ = env.step(a):

o = 45 a=4/5 (Pick/ Drop)−−−−−−−−−−−−−→ 〈nobs = 45, r = −10, term = False, trunc = False〉
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Taxi Environment Step III

Pick/ Drop

nobs, r, term, trunc, _ = env.step(a):

o = 45 a=4/5 (Pick/ Drop)−−−−−−−−−−−−−→ 〈nobs = 45, r = −10, term = False, trunc = False〉
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Implement your RL Agent



Recap: SARSA

On-Policy TD Control: Sarsa
−→ learn qπ and improve π while following π

Updates: Q(St,At)← Q(St,At) + α [Rt+1 + γQ(St+1,At+1)− Q(St,At)]

Exploration: ε-greedy policy π
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SARSA Agent Class Structure

• __init__ Initialise agent and Q-table as dictionary mapping
(obs, act) -> q-val

• act: ε-greedy policy

• learn: Update Q-table given new experience

Q(St,At)← Q(St,At) + α [Rt+1 + γQ(St+1,At+1)− Q(St,At)]

• schedule_hyperparameters: Update hyperparameters given training progress
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And now in Code ... act

Epsilon-greedy Action Selection

def act ( se l f , obs ) :
ac t_va l s = [ s e l f . q_table [ ( obs , act ) ] for act in range ( s e l f .
n_acts ) ]
max_val = max ( ac t_va l s )
max_acts = [ idx for idx , ac t_va l in enumerate ( ac t_va l s ) i f
ac t_va l == max_val ]

i f random . random ( ) < s e l f . eps i lon :
return random . randint ( 0 , s e l f . n_acts − 1 )

else :
return random . choice ( max_acts )
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And now in Code ... learn

SARSA Q-Update

def learn(self, obs, action, reward, n_obs, n_action, done):
target_value = reward + self.gamma * (1 - done) * self.

q_table[(n_obs, n_action)]
self.q_table[(obs, action)] += self.alpha * (

target_value - self.q_table[(obs, action)]
)
return self.q_table[(obs, action)]

Q(St,At)← Q(St,At) + α [Rt+1 + γQ(St+1,At+1)− Q(St,At)]
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And now in Code ... schedule_hyperparameters

SARSA ε-Scheduling

def schedule_hyperparameters(self, timestep, max_timestep):
max_deduct, decay = 0.95, 0.07
self.epsilon = 1.0 - (min(1.0, timestep/(decay *

max_timestep))) * max_deduct
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Evaluate your Results



Why do We Evaluate in the First Place?

• It gives our approach credibility
• Empirical evaluation is no proof, but can give strong indication about the
strengths and limitations of an approach (when done right!)

How to do it right?
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What to Evaluate?

Evaluation Returns
• Plot mean returns over multiple runs
• Visualise standard deviation or confidence
interval
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Which returns do we plot?

• Execute multiple evaluation runs with ε = 0 at fixed intervals
• Evaluation does not involve any learning!
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Keep Track of Everything!

Hyperparameters
• Track hyperparameters, here ε-decay
• Try various values in a grid- or random-search and find good configuration
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SARSA Gridsearch over Learning Rate α for Taxi-v3
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Figure 1: α = 0.9
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Figure 2: α = 0.3
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Figure 3: α = 0.7
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Figure 4: α = 0.2
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Figure 5: α = 0.5
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SARSA Learning Rate α Gridsearch Overview
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Figure 7: Gridsearch overview over learning rate α with half standard deviation as shading
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Common Pitfalls (1)

”But it worked last time!”

• It’s not enough to make it work once!
• Meaningful evaluation achieves consistent performance over multiple
randomised runs

• Most RL algorithms have random components (e.g. ε-greedy policies)
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Common Pifalls (2) (Henderson, 2018; Colas et al., 2019)

Is plotting the mean return, even with confidence interval, enough?

Which one is better?

It’s actually the same method!

Apparently, it’s not enough! −→ Statistical hypothesis testing (Colas et al., 2019)
and effective statistical evaluation (Agarwal et al., 2021)
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Common Pitfalls (3) (Bishop, 2019)

”Why should I use those random seeds? random already delivers random values!”

• Our goal with empirical evaluations is to make meaningful claims about the
implemented approach and achieve reproducible performance

• Random seeds allow us to fixate random behaviour
• Reproducibility is key for meaningful research

But NEVER choose/ tune your random seeds!
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Demonstration

24



All code is available at https://github.com/uoe-agents/
Building-a-Complete-RL-System_Demonstration
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Any questions about this lecture or the demonstration?
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