Reinforcement Learning

Coursework Introduction

Mhairi Dunion, Trevor McInroe
13 February 2024
Lecture Outline

• Coursework Outline
• Marking Details
• Submission Instructions
• Getting Started
• Contact
• Demonstration Session
Coursework Outline
• Dynamic Programming (15 Marks)
• Tabular Reinforcement Learning (20 Marks)
• Deep Reinforcement Learning for Discrete Actions (32 Marks)
• Deep Reinforcement Learning for Continuous Actions (18 Marks)
• Fine-turning the Algorithms (15 Marks)
Implement functions for Value Iteration & Policy Iteration
Marked based on correctness of your implementation
Create your own MDPs to debug your implementation
Question 2 - Tabular Reinforcement Learning

- Implement functions for Q-Learning and Monte Carlo with ϵ-greedy policy
- Marked based on:
 - Correctness of Implementation
 - Hyperparameter tuning questions

Figure 2: FrozenLake Environment
Question 3 - Deep Reinforcement Learning

• Implement deep reinforcement learning algorithms
 • Value-based: DQN
 • Policy gradient: REINFORCE

• Marked based on:
 • Correctness of Implementation
 • Hyperparameter tuning & scheduling questions
 • Loss understanding questions
Question 4 - Deep Deterministic Policy Gradient

- Implement the Deep Deterministic Policy Gradient (DDPG) algorithm
- Stable hyperparameters for Racetrack are provided to check your algorithm’s correctness
- Tune the deep networks’ sizes
- Provide a trained model for DDPG in Racetrack
- Marked based on:
 - Correctness of Implementation
 - Mean returns achieved by your agent at the end of training

Figure 4: Rendering of the Racetrack environment
Question 5 - Fine-tuning the Algorithms

- Same setting and environment as in Q4, but harder performance targets
- You are given complete freedom over hyperparameter tuning and scheduling
- Provide a trained model for DDPG in Racetrack
- Marking based on:
 - Mean end of training returns achieved by your agent
 - A description of your hyperparameter tuning strategy
Organisation
Marking Details

• Unit tests to evaluate correctness
 • Read documentations for desired outputs of each function

• Evaluation of performance measured by average returns
 • See coursework document for expected performance of each environment

• Write-up
 • Fill the functions in answer_sheet.py
Q4 and Q5 Performance Marks

• You need to provide trained models for
 • Q4 DDPG in Racetrack
 • Q5 DDPG in Racetrack (≠ the one for Q4)

• Make sure you also provide the correct configuration dict for your model in *train_ddpg.py*
Submission Details

• Organize submission files as instructed in coursework document
• Submit as zip file through LEARN
• LEARN assignment submission guidelines:
• Deadline: March 29th 2024, 12:00 Noon
Getting Started
Getting Started

• Read the coursework description (download from the course page)
• Read the code base documentation
• Understand the training script for each question
• Read the cited papers for each question
Codebase Setup

- Install Python3
- Set up virtual environment
- Download code base

 `git clone https://github.com/uoe-agents/uoe-rl2024-coursework`

- Install package dependencies

 `pip install -e .`
Support
• Questions should be posted on Piazza
• Clarification will be posted by TA team (Mhairi, Trevor)
• Use tags in Piazza to organize posts for easy search
• Please do not discuss implementation details!
Demonstration Session

- Labs will be held from W5 (this week!) to W8
- W5: Installation & setup troubleshooting
- W6: PyTorch Demonstration
- W7: Q&A with priority on Q1, Q2 and Q3
- W8: Q&A with priority on Q4 and Q5

Come with questions prepared! These are Q&A’s, not lectures!
Common Pitfalls!

- Extension deadlines are strict! Never submit late on an extension!
- Forks are public. Keep your code private and never share it.
- Start early!
- Q5 is meant to be harder than the rest of the assignment. Focus on Q1-Q4 first.
- Following suggestions of our RL tutorial lecture, keep track of performance and hyperparameters using plotting tools.
- Do not implement optimisations or tricks outside of the provided specifications (even if they improve performance)!
Any Questions?
Codebase introduction