Reinforcement Learning
Policy Gradient Methods

Stefano V. Albrecht, Michael Herrmann
27 February 2024

THE UNIVERSITY of EDINBURGH

informatics

Lecture Outline

e Parameterised policies

Softmax and Gaussian policies as examples

Policy gradient theorem

Policy gradient methods: REINFORCE, baselines, actor-critic family

Value Function Approximation

Previously: approximate value function with parameterised function
U(s,w) =~ vi(s)
CAI(S,C"W) ~ C]ﬂ—(S,a)
Policy was generated implicitly from value function (e.g. e-greedy)

e Compact: number of parameters in w can be much smaller than |S|

e Generalises: changing one parameter value may change value of many
states/actions

Policy Function Approximation

Today: approximate policy with parameterised function

w(als,0) =Pr{Ar=a| St =50 =6}

0 € RY is policy parameter vector

e.g. linear function, neural network, decision tree, ...

e Compact: number of parameters in # can be much smaller than |S]|

e Generalises: changing one parameter value may change action in many states

Policy vs Value Approximation

Advantages of optimising policy directly:

e Can learn stochastic policies
(assign any probabilities to actions)

e Effective in high-dimensional and
continuous action spaces

= Important for robotics applications

e Better convergence properties,
typically to local optimum

Example: Optimal Stochastic Policy in Short Corridor

L optimal
Reward is —1 until sloch.astic
goal state reached a0l policy

£-greedy right

Assume agent cannot
distinguish between eor
states, only between 8 G
left/right action 80r 4 e-greedy left
e =0.05 -100 -,) ,
(e = 0.1in book is typo) 0 01 02 03 04 05 06 07 08 09 1

probability of right action

Parameterised Policies

How to parameterise policy?

e We focus on gradient-based optimisation — need differentiable policy

e Examples:
— Softmax for discrete actions
— Gaussian for continuous actions
— Deep neural network (next lectures)

Parameterised Policies

How to parameterise policy?

e We focus on gradient-based optimisation — need differentiable policy
e Examples:

— Softmax for discrete actions

— Gaussian for continuous actions

— Deep neural network (next lectures)

How to optimise policy parameters?

e Policy gradient theorem leads to family of optimisation algorithms
e Monte Carlo, n-step TD, TD(\), ...

Softmax Policy for Discrete Actions

For discrete actions, can use softmax

policy:

w(als,8) =

e Action preference h(s,a,#) can be
parameterised arbitrarily, e.g. linear in

features

eh(S,aﬂ)
5, eNEbd)

h(s,a,0) = 6" x(s,a)

Preference

40

30 -

20 -

-10

-20

-30

Actions

Gaussian Policy for Continuous Actions

For continuous actions, can use Gaussian

policy:
a~ N(u(s,8),0%) Baammaasm
- e o
n=0, 02:5.0,—
e Mean p can be parameterised 7 / \ S
arbitrarily, e.g. linear in features) /\ / \ 1

(s, 0) = 6" x(s)

e Variance o2 can be fixed or also
parameterised (see book)

Policy Optimisation Objective

Goal: given policy representation =(als, #), find optimal parameters 6

How to measure quality of 7

e |n episodic tasks, can use value of start state sq:

J(0) = vy (o)

Policy Optimisation Objective

Goal: given policy representation =(als, #), find optimal parameters 6

How to measure quality of 7

e |n episodic tasks, can use value of start state sq:
J(6) = Vay(S0)
e In continuing tasks, can use average reward:

J(6) =Y Pa(s)D _w(als,0) Y p(s'rls,a)r

Pr(s) Is steady-state distribution under =

Policy Gradient

e Policy gradient algorithms search for a local Eﬁ?ﬁ ’j’//f//j’;y
maximum in J(#) by ascending the gradient — 7

of mwrt @ :jjf:f//:///,////
=N e
Or11 = 0t + a VJ(0r) ///:y/
S
/ _ /
e VJ(8) is the policy gradient / / 05 //{

_ (918) 9J(9)
vI(9) = < o aed,>

10

Policy Gradient Theorem

Policy Gradient Theorem:
For any differentiable policy «, the policy gradient is

VI(0) = > dx(s)) ax(s,a) Vr(als,0)

d.(s) is the on-policy distribution under =
e For start-state value: d(s) = > 2o ¥ Pr{St = s | So, 7}

e For average reward: d.(S) = lim;_ Pr{S; = s | 7} (steady-state dist.)

Note: does not require derivative of environment dynamics p(s’, r|s,a)!

n

Sampling Policy Gradient

Since d,(s) is on-policy, we can sample approximate gradient:

VI(0) = dx(5)) gn(s,a) Vr(als,6)

12

Sampling Policy Gradient

Since d,(s) is on-policy, we can sample approximate gradient:

VI(0) = dx(5)) gn(s,a) Vr(als,6)

-F,

> qx(S:,0) V(alSt, 9)]

12

Sampling Policy Gradient

Since d,(s) is on-policy, we can sample approximate gradient:

VI(0) = dx(5)) gn(s,a) Vr(als,6)

> qx(S:,0) V(alSt, 9)]

2 m(alse.0) ax(S1.a) ~rore o

a

[vr(alSt, 9)]

12

Sampling Policy Gradient

Since d,(s) is on-policy, we can sample approximate gradient:

VI(0) = dx(5)) gn(s,a) Vr(als,6)

> qx(S:,0) V(alSt, 9)]

] vr(alSt, 6)
Z m(a|St, 0) G (St, a) 7T(C1|5t,t@)]

a

' vV (AdSt, 0
(S, Av) W]

m(At|St, 0)

12

Sampling Policy Gradient

Since d,(s) is on-policy, we can sample approximate gradient:

VI(0) = dx(5)) gn(s,a) Vr(als,6)

=Er| > (St a) Va(alSt, 9)]

= B Y n(als,) 4+(50.0) W]

a

' Vr(AlS:. 0
=Ex|q-(5,At) W]

m(At|St, 0)

= Eﬂ—[qﬁ(sf. A() Vin F(A[‘Sf. H)]

12

General Gradient Update

General gradient update: 6y = 0; + a(qT(S[‘A[) V In7(A¢|St, H[))

A policy gradient method needs to:

13

General Gradient Update

General gradient update: 6y = 0; + a(qT(S[‘A[) V In7(A¢|St, H[))

A policy gradient method needs to:

e Compute/approximate V Inm(A¢|St, 6;)
— Softmax policy: Vinm(als,8) = x(s,a) — >, w(d’|s,8)x(s,a’)
— Gaussian policy: Vinn(als,0) = (a — u(s,0))x(s) / o?

13

General Gradient Update

General gradient update: 6y = 0; + a(qT(S[‘A[) V In7(A¢|St, H[))

A policy gradient method needs to:

e Compute/approximate V Inm(A¢|St, 6;)
— Softmax policy: Vinm(als,8) = x(s,a) — >, w(d’|s,8)x(s,a’)
— Gaussian policy: Vinn(als,0) = (a — u(s,0))x(s) / o?

e Approximate g-(St,A¢)

e.g. Monte Carlo: use Gy, since Ex[Gt|St,At] = q»(St, At)
= REINFORCE algorithm

13

REINFORCE Update Rule

REINFORCE update rule:

VW(AHS{, et)

Oy =0 +aG
t4+1 t t (AdlSe, 67)

L4 VT('(A{|S{, Ht)
e G

° W(At‘st, Ht)_1

REINFORCE Update Rule

REINFORCE update rule:

VW(AHS{, et)

Oy =0 +aG
t4+1 t t (AdlSe, 67)

o Vm(A¢|St,0:) — direction in parameter space that most increases the probability
of repeating action A; on future visits to state S¢

e G

° W(At‘st, Ht)_1

REINFORCE Update Rule

REINFORCE update rule:

VW(AHS{, 9{)

Oy =0 +aG
t4+1 t t (AdlSe, 67)

o Vm(A¢|St,0:) — direction in parameter space that most increases the probability
of repeating action A; on future visits to state S¢

e G; — make gradient magnitude proportional to return (better actions get larger
updates)

° W(At‘st, Ht)_1

REINFORCE Update Rule

REINFORCE update rule:

VW(AHS{, 9{)

Oy =0 +aG
t4+1 t t (AdlSe, 67)

o Vm(A¢|St,0:) — direction in parameter space that most increases the probability
of repeating action A; on future visits to state S¢

e G; — make gradient magnitude proportional to return (better actions get larger
updates)

o m(A¢|St, 0:)~" — make gradient magnitude inversely proportional to probability of
At to normalise against frequency of observed A; (like importance sampling)

REINFORCE Pseudocode

See Tutorial 7

Input: a differentiable policy parameterization m(als,)
Algorithm parameter: step size o > 0
Initialize policy parameter 6 € RY (e.g., to 0)

Loop forever (for each episode):
Generate an episode So, Ag, R1,...,Sr—-1,Ar—1, Ry, following 7 (-|-,0)
Loop for each step of the episode t =0,1,...,T — 1:
G iy 1 R (G)
0 < 0+ ay'GVinm(AS;, 0)

15

REINFORCE in Corridor Example

I (| _ 5—12
Go 40 il i\ a=2"
Total reward Il
on episode
averaged over 100 runs
_60 -
| I
_80 -
-90 B 1 1 1 1 1 |
1 200 400 600 800 1000

Episode

Baseline to Reduce Variance in Updates

Can generalise policy update to include baseline:
(qﬂ(st, At) — b(Sf))V In W(At‘st, 9)
Does not change expectation:
B[V Inm(AdlSt, 0) b(S)] =Y dx(s) Y Vn(als,0) b(s)
S a
= d(s)b(s)V > _n(als,0)
S a
= d(s)b(s) V1 = 0
S

But can reduce variance of updates, e.g. use b(s) = V(S¢, w)

REINFORCE with Baseline in Corridor Example

10, REINFORCE W\Th baselme o’ =2

~ I .‘- 4“'4 xS)
i e) ‘M ‘w,'pwﬂmﬁwwwww v« (S0,
Ry WW AR
| !
“ M RE|NFORCE
GO a0l Nm a=2""
Total reward 1 w
on episode
averaged E/EHOO runs 0 Nd” O(St,W) =W (One pal’ameter in \7)
-80+ A
-90
1 200 400 600 800 1000

Episode

Actor-Critic Methods

REINFORCE uses MC updates:

e large variance in updates (as any MC method)

e has to wait until end of episode (as any MC method)

Policy gradient can also use TD methods — then called Actor-Critic method

e.g. semi-gradient TD(0):

9t+'| = et + « (RH;} -9 \A/(SH,L W) — O(St,W)) Vin W(At‘St,e)

e (Critic updates value function parameters w

e Actor updates policy function parameters 6

Actor-Critic with Semi-Gradient TD(0)

Input: a differentiable policy parameterization m(a|s, 0)
Input: a differentiable state-value function parameterization 0(s,w)
Parameters: step sizes o > 0, ™ > 0
Initialize policy parameter 8 € RY and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

I<1
Loop while S is not terminal (for each time step):
A~ 7(-|S,0)
Take action A, observe S, R
§«— R+~0(S" ,w) —0(S,w) (if S is terminal, then 0(S’',w) = 0)

W w4+ aVIVo(S,w)
0+ 0+a%15Vinm(A|S,0)
I +—~I

S5

20

Advanced Policy Gradient Methods

More advanced policy gradient methods:

Natural Policy Gradient

Trust Region Policy Optimisation

Proximal Policy Optimisation

Deterministic Policy Gradient

(Search on Google Scholar)

21

Required:
e RL book, Chapter 13 (131-13.5)

End of examinable material. For extra exam revision, see Tutorials 8 & 9.

Optional:

e S. Bhatnagar, R. Sutton, M. Ghavamzadeh, M. Lee (2009). Natural Actor-Critic
Algorithms. Automatica, 45(11)

e Marc P. Deisenroth, G. Neumann, J. Peters (2013). A Survey on Policy Search for
Robotics. Foundations and Trends in Robotics, Vol. 2: No. 1-2, pp 1-142

22

