
Reinforcement Learning
Deep Reinforcement Learning I

Mhairi Dunion
1 March 2024

Lecture Outline

• Motivation
• Deep Learning
• Deep Reinforcement Learning
• Experience replay
• Target networks
• Deep Q-Networks
• Extensions of DQN and best practices

1

Motivation

Recap: Linear Value Function Approximation

Linear Value Function Approximation: v̂(s,w) .
= wTx(s) =

∑d
i=1 wi xi(s)

• x(s) = (x1(s), · · · , xd(s))T is a feature vector of state s
• Gradient descent using

∇wv̂(s,w) =
(
∂v̂(s,w)
∂w1

, · · · ∂v̂(s,w)
∂wd

)T

=

(
∂wTx(s)
∂w1

, · · · ∂w
Tx(s)
∂wd

)T

= x(s)

• Gradient update: wt+1 = wt + α [Ut − v̂(St,wt)] x(St)

2

Recap: Linear Value Function Approximation

Linear Value Function Approximation: v̂(s,w) .
= wTx(s) =

∑d
i=1 wi xi(s)

• x(s) = (x1(s), · · · , xd(s))T is a feature vector of state s

• Gradient descent using

∇wv̂(s,w) =
(
∂v̂(s,w)
∂w1

, · · · ∂v̂(s,w)
∂wd

)T

=

(
∂wTx(s)
∂w1

, · · · ∂w
Tx(s)
∂wd

)T

= x(s)

• Gradient update: wt+1 = wt + α [Ut − v̂(St,wt)] x(St)

2

Recap: Linear Value Function Approximation

Linear Value Function Approximation: v̂(s,w) .
= wTx(s) =

∑d
i=1 wi xi(s)

• x(s) = (x1(s), · · · , xd(s))T is a feature vector of state s
• Gradient descent using

∇wv̂(s,w) =
(
∂v̂(s,w)
∂w1

, · · · ∂v̂(s,w)
∂wd

)T

=

(
∂wTx(s)
∂w1

, · · · ∂w
Tx(s)
∂wd

)T

= x(s)

• Gradient update: wt+1 = wt + α [Ut − v̂(St,wt)] x(St)

2

Recap: Linear Value Function Approximation

Linear Value Function Approximation: v̂(s,w) .
= wTx(s) =

∑d
i=1 wi xi(s)

• x(s) = (x1(s), · · · , xd(s))T is a feature vector of state s
• Gradient descent using

∇wv̂(s,w) =
(
∂v̂(s,w)
∂w1

, · · · ∂v̂(s,w)
∂wd

)T

=

(
∂wTx(s)
∂w1

, · · · ∂w
Tx(s)
∂wd

)T

= x(s)

• Gradient update: wt+1 = wt + α [Ut − v̂(St,wt)] x(St)

2

Recap: Linear Value Function Approximation

Linear Value Function Approximation: v̂(s,w) .
= wTx(s) =

∑d
i=1 wi xi(s)

• x(s) = (x1(s), · · · , xd(s))T is a feature vector of state s
• Gradient descent using

∇wv̂(s,w) =
(
∂v̂(s,w)
∂w1

, · · · ∂v̂(s,w)
∂wd

)T

=

(
∂wTx(s)
∂w1

, · · · ∂w
Tx(s)
∂wd

)T

= x(s)

• Gradient update: wt+1 = wt + α [Ut − v̂(St,wt)] x(St)

2

Recap: Linear Value Function Approximation

Linear Value Function Approximation: v̂(s,w) .
= wTx(s) =

∑d
i=1 wi xi(s)

• x(s) = (x1(s), · · · , xd(s))T is a feature vector of state s
• Gradient descent using

∇wv̂(s,w) =
(
∂v̂(s,w)
∂w1

, · · · ∂v̂(s,w)
∂wd

)T

=

(
∂wTx(s)
∂w1

, · · · ∂w
Tx(s)
∂wd

)T

= x(s)

• Gradient update: wt+1 = wt + α [Ut − v̂(St,wt)] x(St)

2

Problems with Linear Approximator

Linear approximation assumes value function is linear in state features

• Difficult to find state representation that upholds this assumption

• Difficult to find good state representation for high dimensional data
(e.g. images, time series)

• Simple model might not generalise well

We need an alternative model for generalisation!

3

Problems with Linear Approximator

Linear approximation assumes value function is linear in state features

• Difficult to find state representation that upholds this assumption

• Difficult to find good state representation for high dimensional data
(e.g. images, time series)

• Simple model might not generalise well

We need an alternative model for generalisation!

3

Problems with Linear Approximator

Linear approximation assumes value function is linear in state features

• Difficult to find state representation that upholds this assumption

• Difficult to find good state representation for high dimensional data
(e.g. images, time series)

• Simple model might not generalise well

We need an alternative model for generalisation!

3

Problems with Linear Approximator

Linear approximation assumes value function is linear in state features

• Difficult to find state representation that upholds this assumption

• Difficult to find good state representation for high dimensional data
(e.g. images, time series)

• Simple model might not generalise well

We need an alternative model for generalisation!

3

Problems with Linear Approximator

Linear approximation assumes value function is linear in state features

• Difficult to find state representation that upholds this assumption

• Difficult to find good state representation for high dimensional data
(e.g. images, time series)

• Simple model might not generalise well

We need an alternative model for generalisation!

3

Deep Learning

Neural Networks

Requirements for new model:

• Model parameters can be optimised to minimise TD-error
• Model should be able to represent non-linear functions
• Model should enable better generalisation across different states

⇒ Neural network fits all these requirements

https://www.youtube.com/watch?v=RnFpV1W3_XY,
http://deeplearning.cs.cmu.edu/S23/document/slides/lec2.universal.pdf

4

https://www.youtube.com/watch?v=RnFpV1W3_XY
http://deeplearning.cs.cmu.edu/S23/document/slides/lec2.universal.pdf

Neural Networks

Requirements for new model:

• Model parameters can be optimised to minimise TD-error
• Model should be able to represent non-linear functions
• Model should enable better generalisation across different states

⇒ Neural network fits all these requirements

https://www.youtube.com/watch?v=RnFpV1W3_XY,
http://deeplearning.cs.cmu.edu/S23/document/slides/lec2.universal.pdf

4

https://www.youtube.com/watch?v=RnFpV1W3_XY
http://deeplearning.cs.cmu.edu/S23/document/slides/lec2.universal.pdf

Neural Networks

Requirements for new model:

• Model parameters can be optimised to minimise TD-error
• Model should be able to represent non-linear functions
• Model should enable better generalisation across different states

⇒ Neural network fits all these requirements

https://www.youtube.com/watch?v=RnFpV1W3_XY,
http://deeplearning.cs.cmu.edu/S23/document/slides/lec2.universal.pdf

4

https://www.youtube.com/watch?v=RnFpV1W3_XY
http://deeplearning.cs.cmu.edu/S23/document/slides/lec2.universal.pdf

Neural Networks

Requirements for new model:

• Model parameters can be optimised to minimise TD-error
• Model should be able to represent non-linear functions
• Model should enable better generalisation across different states

⇒ Neural network fits all these requirements

https://www.youtube.com/watch?v=RnFpV1W3_XY,
http://deeplearning.cs.cmu.edu/S23/document/slides/lec2.universal.pdf

4

https://www.youtube.com/watch?v=RnFpV1W3_XY
http://deeplearning.cs.cmu.edu/S23/document/slides/lec2.universal.pdf

Neural Networks - Inspiration from the Brain

Figure 1: From Artificial Neural Networks — Mapping the Human Brain
https://medium.com/predict/
artificial-neural-networks-mapping-the-human-brain-2e0bd4a93160 5

https://medium.com/predict/artificial-neural-networks-mapping-the-human-brain-2e0bd4a93160
https://medium.com/predict/artificial-neural-networks-mapping-the-human-brain-2e0bd4a93160

Neural Network Units

Basic building block of neural network

Computes non-linear function of the
inputs in two steps:

1. Compute linear transformation of the
inputs parameterised by θ

h = θ1x+ θ2y

2. Pass output through non-linear
activation function f

z = f(h)

6

Linear approximation is
special case: f(h) = h

Neural Network Units

Basic building block of neural network

Computes non-linear function of the
inputs in two steps:

1. Compute linear transformation of the
inputs parameterised by θ

h = θ1x+ θ2y

2. Pass output through non-linear
activation function f

z = f(h)

6

Linear approximation is
special case: f(h) = h

Neural Network Units

Basic building block of neural network

Computes non-linear function of the
inputs in two steps:

1. Compute linear transformation of the
inputs parameterised by θ

h = θ1x+ θ2y

2. Pass output through non-linear
activation function f

z = f(h)

6

Linear approximation is
special case: f(h) = h

Neural Network Units

Basic building block of neural network

Computes non-linear function of the
inputs in two steps:

1. Compute linear transformation of the
inputs parameterised by θ

h = θ1x+ θ2y

2. Pass output through non-linear
activation function f

z = f(h)

6

Linear approximation is
special case: f(h) = h

Neural Network Units

Basic building block of neural network

Computes non-linear function of the
inputs in two steps:

1. Compute linear transformation of the
inputs parameterised by θ

h = θ1x+ θ2y

2. Pass output through non-linear
activation function f

z = f(h)

6

Linear approximation is
special case: f(h) = h

Common Activation Functions

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture04.pdf

7

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture04.pdf

Multi-Layer Perceptron

• Arrange multiple units into layers
• Outputs from one layer used as input
to next layer

• Each layer computed as matrix
multiplication

• Formulate a loss function of the output
• Adjust network parameters θ to
minimise the loss

8

Multi-Layer Perceptron

• Arrange multiple units into layers
• Outputs from one layer used as input
to next layer

• Each layer computed as matrix
multiplication

• Formulate a loss function of the output
• Adjust network parameters θ to
minimise the loss

8

Multi-Layer Perceptron

• Arrange multiple units into layers
• Outputs from one layer used as input
to next layer

• Each layer computed as matrix
multiplication

• Formulate a loss function of the output
• Adjust network parameters θ to
minimise the loss

8

Multi-Layer Perceptron

• Arrange multiple units into layers
• Outputs from one layer used as input
to next layer

• Each layer computed as matrix
multiplication

• Formulate a loss function of the output
• Adjust network parameters θ to
minimise the loss

8

Recap: Stochastic Gradient Descent

• Numerical optimisation method using the gradients of the loss L

θt+1 = θt − α∇θtL

• ∇θtL is direction of maximum increase
of loss function

• Follow the direction that minimises
the function (−∇θtL)

• Converges to local optimum under
standard α-reduction

9

Recap: Stochastic Gradient Descent

• Numerical optimisation method using the gradients of the loss L

θt+1 = θt − α∇θtL

• ∇θtL is direction of maximum increase
of loss function

• Follow the direction that minimises
the function (−∇θtL)

• Converges to local optimum under
standard α-reduction

9

Recap: Stochastic Gradient Descent

• Numerical optimisation method using the gradients of the loss L

θt+1 = θt − α∇θtL

• ∇θtL is direction of maximum increase
of loss function

• Follow the direction that minimises
the function (−∇θtL)

• Converges to local optimum under
standard α-reduction

9

Recap: Stochastic Gradient Descent

• Numerical optimisation method using the gradients of the loss L

θt+1 = θt − α∇θtL

• ∇θtL is direction of maximum increase
of loss function

• Follow the direction that minimises
the function (−∇θtL)

• Converges to local optimum under
standard α-reduction

9

Recap: Stochastic Gradient Descent

• Numerical optimisation method using the gradients of the loss L

θt+1 = θt − α∇θtL

• ∇θtL is direction of maximum increase
of loss function

• Follow the direction that minimises
the function (−∇θtL)

• Converges to local optimum under
standard α-reduction

9

Backpropagation

We need gradients ∇θtf(x; θt) to compute ∇θtL
⇒ How to compute ∇θtf(x; θt) when f is represented as neural network?

Backpropagation

• Efficiently calculates the gradient in a single backward pass of the neural network
• Automated differentiation packages have commands to quickly backpropagate
⇒ In Pytorch, use backward()

We won’t discuss details of backpropagation algorithm here;
see Deep Learning book by Goodfellow et al. or MLPR notes for more details

10

https://www.deeplearningbook.org/
https://mlpr.inf.ed.ac.uk/2020/notes/w8d_backprop.html

Backpropagation

We need gradients ∇θtf(x; θt) to compute ∇θtL
⇒ How to compute ∇θtf(x; θt) when f is represented as neural network?

Backpropagation

• Efficiently calculates the gradient in a single backward pass of the neural network
• Automated differentiation packages have commands to quickly backpropagate
⇒ In Pytorch, use backward()

We won’t discuss details of backpropagation algorithm here;
see Deep Learning book by Goodfellow et al. or MLPR notes for more details

10

https://www.deeplearningbook.org/
https://mlpr.inf.ed.ac.uk/2020/notes/w8d_backprop.html

Backpropagation

We need gradients ∇θtf(x; θt) to compute ∇θtL
⇒ How to compute ∇θtf(x; θt) when f is represented as neural network?

Backpropagation

• Efficiently calculates the gradient in a single backward pass of the neural network

• Automated differentiation packages have commands to quickly backpropagate
⇒ In Pytorch, use backward()

We won’t discuss details of backpropagation algorithm here;
see Deep Learning book by Goodfellow et al. or MLPR notes for more details

10

https://www.deeplearningbook.org/
https://mlpr.inf.ed.ac.uk/2020/notes/w8d_backprop.html

Backpropagation

We need gradients ∇θtf(x; θt) to compute ∇θtL
⇒ How to compute ∇θtf(x; θt) when f is represented as neural network?

Backpropagation

• Efficiently calculates the gradient in a single backward pass of the neural network
• Automated differentiation packages have commands to quickly backpropagate
⇒ In Pytorch, use backward()

We won’t discuss details of backpropagation algorithm here;
see Deep Learning book by Goodfellow et al. or MLPR notes for more details

10

https://www.deeplearningbook.org/
https://mlpr.inf.ed.ac.uk/2020/notes/w8d_backprop.html

Backpropagation

We need gradients ∇θtf(x; θt) to compute ∇θtL
⇒ How to compute ∇θtf(x; θt) when f is represented as neural network?

Backpropagation

• Efficiently calculates the gradient in a single backward pass of the neural network
• Automated differentiation packages have commands to quickly backpropagate
⇒ In Pytorch, use backward()

We won’t discuss details of backpropagation algorithm here;
see Deep Learning book by Goodfellow et al. or MLPR notes for more details

10

https://www.deeplearningbook.org/
https://mlpr.inf.ed.ac.uk/2020/notes/w8d_backprop.html

Deep Reinforcement Learning

Naive Deep Reinforcement Learning

• Tabular RL is unable to scale to large state or action spaces

• Discretisation is required for continuous state spaces
• Naive replacement of linear model with neural network is problematic:
• High correlation between consecutive experiences
• Moving target values in TD methods

11

Naive Deep Reinforcement Learning

• Tabular RL is unable to scale to large state or action spaces
• Discretisation is required for continuous state spaces

• Naive replacement of linear model with neural network is problematic:
• High correlation between consecutive experiences
• Moving target values in TD methods

11

Naive Deep Reinforcement Learning

• Tabular RL is unable to scale to large state or action spaces
• Discretisation is required for continuous state spaces
• Naive replacement of linear model with neural network is problematic:
• High correlation between consecutive experiences
• Moving target values in TD methods

11

Problem: Correlation of Consecutive Experiences

12

Problem: Correlation of Consecutive Experiences

12

Solution Idea: Experience Replay

Replay buffer:
• Store most recent experience
tuples (s,a, r, s′) in FIFO buffer D

• Create training batches by
uniformly sampling from buffer

• Random sampling “breaks”
correlation between experiences

• Loss defined over batch:

L(θt) = E(s,a,r,s′)∼U(D)

[(
r+ γmax

a′
Q(s′,a′; θt)− Q(s,a; θt)

)2]

13

Solution Idea: Experience Replay

Replay buffer:
• Store most recent experience
tuples (s,a, r, s′) in FIFO buffer D

• Create training batches by
uniformly sampling from buffer

• Random sampling “breaks”
correlation between experiences

• Loss defined over batch:

L(θt) = E(s,a,r,s′)∼U(D)

[(
r+ γmax

a′
Q(s′,a′; θt)− Q(s,a; θt)

)2]

13

Solution Idea: Experience Replay

Replay buffer:
• Store most recent experience
tuples (s,a, r, s′) in FIFO buffer D

• Create training batches by
uniformly sampling from buffer

• Random sampling “breaks”
correlation between experiences

• Loss defined over batch:

L(θt) = E(s,a,r,s′)∼U(D)

[(
r+ γmax

a′
Q(s′,a′; θt)− Q(s,a; θt)

)2]

13

Solution Idea: Experience Replay

Replay buffer:
• Store most recent experience
tuples (s,a, r, s′) in FIFO buffer D

• Create training batches by
uniformly sampling from buffer

• Random sampling “breaks”
correlation between experiences

• Loss defined over batch:

L(θt) = E(s,a,r,s′)∼U(D)

[(
r+ γmax

a′
Q(s′,a′; θt)− Q(s,a; θt)

)2]
13

Problem: Moving Targets

Target values computed through value function

r+ γmax
a
Q(s′,a; θ)

⇒ Target values change each time value function is modified

• Non-stationarity makes learning optimal θ more difficult
• Require a way to make target values change less frequently

14

Problem: Moving Targets

Target values computed through value function

r+ γmax
a
Q(s′,a; θ)

⇒ Target values change each time value function is modified

• Non-stationarity makes learning optimal θ more difficult
• Require a way to make target values change less frequently

14

Problem: Moving Targets

Target values computed through value function

r+ γmax
a
Q(s′,a; θ)

⇒ Target values change each time value function is modified

• Non-stationarity makes learning optimal θ more difficult
• Require a way to make target values change less frequently

14

Solution Idea: Target Networks

Use two sets of network parameters:

• θ for value network Q(s,a; θ)

• θ− for target network Q̂(s,a; θ−)

Use target network to compute update targets: r+ γmaxa′ Q̂(s′,a′; θ−)

Change target network more slowly than value network:

• hard update: set θ− ← θ every C time steps
• or soǌt update: at each time step, move parameters slightly closer to the value
network: θ− ← (1− τ)θ− + τθ

15

Solution Idea: Target Networks

Use two sets of network parameters:

• θ for value network Q(s,a; θ)
• θ− for target network Q̂(s,a; θ−)

Use target network to compute update targets: r+ γmaxa′ Q̂(s′,a′; θ−)

Change target network more slowly than value network:

• hard update: set θ− ← θ every C time steps
• or soǌt update: at each time step, move parameters slightly closer to the value
network: θ− ← (1− τ)θ− + τθ

15

Solution Idea: Target Networks

Use two sets of network parameters:

• θ for value network Q(s,a; θ)
• θ− for target network Q̂(s,a; θ−)

Use target network to compute update targets: r+ γmaxa′ Q̂(s′,a′; θ−)

Change target network more slowly than value network:

• hard update: set θ− ← θ every C time steps
• or soǌt update: at each time step, move parameters slightly closer to the value
network: θ− ← (1− τ)θ− + τθ

15

Solution Idea: Target Networks

Use two sets of network parameters:

• θ for value network Q(s,a; θ)
• θ− for target network Q̂(s,a; θ−)

Use target network to compute update targets: r+ γmaxa′ Q̂(s′,a′; θ−)

Change target network more slowly than value network:

• hard update: set θ− ← θ every C time steps
• or soǌt update: at each time step, move parameters slightly closer to the value
network: θ− ← (1− τ)θ− + τθ

15

Deep Q-Networks [Mnih et al., 2015]

• Use replay buffer and target networks
⇒ First successful application of deep neural networks to reinforcement learning

• Play Atari games beyond human level

16

Deep Q-Networks [Mnih et al., 2015]

17

Replay buffer→

Hard update→

State Pre-Processing

Markov Property:

Pr{St+1,Rt+1 | St,At, St−1,At−1, ..., S0,A0} = Pr{St+1,Rt+1 | St,At}

Given below state of Breakout, does first-order Markov property hold?

18

No→ Use as state the last 4
observations (frames) in order to
model the velocity of the ball

State Pre-Processing

Markov Property:

Pr{St+1,Rt+1 | St,At, St−1,At−1, ..., S0,A0} = Pr{St+1,Rt+1 | St,At}

Given below state of Breakout, does first-order Markov property hold?

18

No→ Use as state the last 4
observations (frames) in order to
model the velocity of the ball

DQN Results [Mnih et al., 2015]

• Exceeded human level performance in
most of the Atari games

• Fails in games with very sparse
rewards, like Montezuma’s revenge

19

Limitations of DQN

• No convergence guarantees in theory
• Sensitive to hyperparameters
• Only for discrete action space

20

DQN Hyperparameter Sensitivity in Enduro [Sprague, 2015]

• The graphs display rewards of an agent
trained using various hyperparameters
in the Enduro game

• Small learning rates might cause
agents to learn slowly

• Large learning rates might cause value
networks to diverge

• Performance from different runs with
the same parameters can vary widely

21

DQN Hyperparameter Sensitivity in Enduro [Sprague, 2015]

• The graphs display rewards of an agent
trained using various hyperparameters
in the Enduro game

• Small learning rates might cause
agents to learn slowly

• Large learning rates might cause value
networks to diverge

• Performance from different runs with
the same parameters can vary widely

21

DQN Hyperparameter Sensitivity in Enduro [Sprague, 2015]

• The graphs display rewards of an agent
trained using various hyperparameters
in the Enduro game

• Small learning rates might cause
agents to learn slowly

• Large learning rates might cause value
networks to diverge

• Performance from different runs with
the same parameters can vary widely

21

DQN Hyperparameter Sensitivity in Enduro [Sprague, 2015]

• The graphs display rewards of an agent
trained using various hyperparameters
in the Enduro game

• Small learning rates might cause
agents to learn slowly

• Large learning rates might cause value
networks to diverge

• Performance from different runs with
the same parameters can vary widely

21

DQN Hyperparameter Sensitivity in Enduro [Sprague, 2015]

• The graphs display rewards of an agent
trained using various hyperparameters
in the Enduro game

• Small learning rates might cause
agents to learn slowly

• Large learning rates might cause value
networks to diverge

• Performance from different runs with
the same parameters can vary widely

21

Problem: Value Network Overestimation [Van Hasselt et al., 2016]

• Q-network tends to overestimate the true value of the agent
• Update target: r+ γmaxa Q̂(s′,a; θ−)

• Considering two random variables: E[max(X1, X2)] ≥ max(E[X1] ,E[X2])
• maxa Q̂(s′,a; θ−) overestimates the next value

22

Problem: Value Network Overestimation [Van Hasselt et al., 2016]

• Q-network tends to overestimate the true value of the agent
• Update target: r+ γmaxa Q̂(s′,a; θ−)
• Considering two random variables: E[max(X1, X2)] ≥ max(E[X1] ,E[X2])
• maxa Q̂(s′,a; θ−) overestimates the next value

22

Problem: Value Network Overestimation [Van Hasselt et al., 2016]

• Q-network tends to overestimate the true value of the agent
• Update target: r+ γmaxa Q̂(s′,a; θ−)
• Considering two random variables: E[max(X1, X2)] ≥ max(E[X1] ,E[X2])
• maxa Q̂(s′,a; θ−) overestimates the next value

22

Solution Idea: Deep Double Q-Network

• Calculate the action that maximises the value network at next state
anext ← argmaxa Q(s′,a; θ)

• Use this action as input to the target network along with the next state
representation

y = r+ γQ̂(s′,anext; θ−)

Deep Double Q-Network:

y = r+ γQ̂(s′, argmax
a
Q(s′,a; θ); θ−)

23

Solution Idea: Deep Double Q-Network

• Calculate the action that maximises the value network at next state
anext ← argmaxa Q(s′,a; θ)

• Use this action as input to the target network along with the next state
representation

y = r+ γQ̂(s′,anext; θ−)

Deep Double Q-Network:

y = r+ γQ̂(s′, argmax
a
Q(s′,a; θ); θ−)

23

Deep Double Q-Network Results [Van Hasselt et al., 2016]

• Outperformed DQN

• More accurate prediction of values
compared to DQN

• Still failed in more difficult games,
like Montezuma’s revenge

24

Prioritised Experience Replay

• Does uniformly sampling experience replay provide the best performance?

• Not all samples have equal importance
• Like prioritised sweeping in DP, choosing samples based on the TD-error can
improve performance

⇒ Proportionally prioritise experiences with higher TD-error and correct updates
based on importance sampling ratio

• But prioritisation requires additional computation for each insertion, update and
removal
⇒ Difficult to implement efficiently

25

Prioritised Experience Replay

• Does uniformly sampling experience replay provide the best performance?
• Not all samples have equal importance

• Like prioritised sweeping in DP, choosing samples based on the TD-error can
improve performance

⇒ Proportionally prioritise experiences with higher TD-error and correct updates
based on importance sampling ratio

• But prioritisation requires additional computation for each insertion, update and
removal
⇒ Difficult to implement efficiently

25

Prioritised Experience Replay

• Does uniformly sampling experience replay provide the best performance?
• Not all samples have equal importance
• Like prioritised sweeping in DP, choosing samples based on the TD-error can
improve performance

⇒ Proportionally prioritise experiences with higher TD-error and correct updates
based on importance sampling ratio

• But prioritisation requires additional computation for each insertion, update and
removal
⇒ Difficult to implement efficiently

25

Prioritised Experience Replay

• Does uniformly sampling experience replay provide the best performance?
• Not all samples have equal importance
• Like prioritised sweeping in DP, choosing samples based on the TD-error can
improve performance
⇒ Proportionally prioritise experiences with higher TD-error and correct updates
based on importance sampling ratio

• But prioritisation requires additional computation for each insertion, update and
removal
⇒ Difficult to implement efficiently

25

Prioritised Experience Replay

• Does uniformly sampling experience replay provide the best performance?
• Not all samples have equal importance
• Like prioritised sweeping in DP, choosing samples based on the TD-error can
improve performance
⇒ Proportionally prioritise experiences with higher TD-error and correct updates
based on importance sampling ratio

• But prioritisation requires additional computation for each insertion, update and
removal
⇒ Difficult to implement efficiently

25

Best Practices for Implementing Deep Q-Networks

• Carefully consider the storage required for your experience
• Explore aggressively in the beginning
• Decrease ϵ as learning progresses
• Periodically store your neural network parameters
• Periodically store contents of your experience replay
• Ensure that your gradients do not explode or vanish

26

Reading (Optional)

More on neural networks and backprop:

• Section 9.7 in RL book
• Book Deep Learning by Ian Goodfellow, Yoshua Bengio, Aaron Courville
Free online: https://www.deeplearningbook.org

• MLPR course notes on
• Neural networks introduction
• Fitting and initializing neural networks
• Backpropagation of Derivatives

27

https://www.deeplearningbook.org
https://mlpr.inf.ed.ac.uk/2021/notes/w7a_neural_net_intro.html
https://mlpr.inf.ed.ac.uk/2021/notes/w7c_neural_net_fitting.html
https://mlpr.inf.ed.ac.uk/2021/notes/w7d_backprop.html

Reading (Optional)

Papers:

• Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves et al. ”Human-level control through deep
reinforcement learning.” Nature 518, no. 7540 (2015): 529

• Van Hasselt, Hado, Arthur Guez, and David Silver. ”Deep Reinforcement Learning
with Double Q-Learning.” In AAAI, vol. 2, p. 5. 2016

• Schaul, Tom, John Quan, Ioannis Antonoglou, and David Silver. ”Prioritized
experience replay.” arXiv preprint arXiv:1511.05952 (2015)

28

	Motivation
	Deep Learning
	Deep Reinforcement Learning
	DQN Introduction
	DQN Extensions

