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Recap: Linear Value Function Approximation

Linear Value Function Approximation: ¥(s,w) = w'x(s) = ZL w; Xi(s)
o X(s) = (x1(s),- - - ,xq(s))" is a feature vector of state s

e Gradient descent using

oY (s, w)\ "
VWV > W ( 8W1 T oWy >
_[(ow'x(s)  ow'x(s) !
a 8W1 8Wd
=X(s)

e Gradient update: wiiq = Wt + « [Ur — U(St, we)] X(St)
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Problems with Linear Approximator

Linear approximation assumes value function is linear in state features

e Difficult to find state representation that upholds this assumption

e Difficult to find good state representation for high dimensional data
(e.g. images, time series)

e Simple model might not generalise well

We need an alternative model for generalisation!
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Neural Networks

Requirements for new model:
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Neural Networks

Requirements for new model:

e Model parameters can be optimised to minimise TD-error
e Model should be able to represent non-linear functions

e Model should enable better generalisation across different states

= Neural network fits all these requirements
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Neural Networks - Inspiration from the Brain

Figure 1: From Artificial Neural Networks — Mapping the Human Brain
https://medium.com/predict/
artificial-neural-networks-mappine-the-human-brain-2e0bd4a93160


https://medium.com/predict/artificial-neural-networks-mapping-the-human-brain-2e0bd4a93160
https://medium.com/predict/artificial-neural-networks-mapping-the-human-brain-2e0bd4a93160

Neural Network Units

Basic building block of neural network




Neural Network Units

Basic building block of neural network

Computes non-linear function of the
inputs in two steps:




Neural Network Units

Basic building block of neural network

Computes non-linear function of the
inputs in two steps:

1. Compute linear transformation of the
inputs parameterised by ¢

h = 61x + 6,y




Neural Network Units

Basic building block of neural network

Computes non-linear function of the
inputs in two steps:

1. Compute linear transformation of the
inputs parameterised by ¢

h = 61x + 6,y

2. Pass output through non-linear
activation function f

z=f(h)



Neural Network Units

Basic building block of neural network

Computes non-linear function of the
inputs in two steps:

1. Compute linear transformation of the
inputs parameterised by ¢

h = 61x + 6,y

2. Pass output through non-linear
activation function f

Linear approximation is
special case: f(h) = h z=f(h)



Common Activation Functions

1 10

Sigmoid Leaky RelLU
) = H_% max(0.1x, x)
tanh |
tanh(z) “’
RelLU ELU |
0 5 o
maX( ) 33) ) {a(ez -1) z<0 - *

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture@4.pdf


http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture04.pdf

Multi-Layer Perceptron
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Multi-Layer Perceptron

input layer

hidden layer

output layer

Arrange multiple units into layers

Outputs from one layer used as input
to next layer

Each layer computed as matrix
multiplication

e Formulate a loss function of the output

Adjust network parameters 6 to
minimise the loss
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Recap: Stochastic Gradient Descent

e Numerical optimisation method using the gradients of the loss L

9t+1 == Qt — OéV@IL

e Vy,L is direction of maximum increase

Q of loss function
200 4
175
150

e Follow the direction that minimises
the function (—Vy,L)
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Backpropagation

We need gradients Vg, f(x; 6¢) to compute Vy,L
= How to compute Vy,f(x; 6;) when fis represented as neural network?
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Backpropagation

We need gradients Vg, f(x; 6¢) to compute Vy,L
= How to compute Vy,f(x; 6;) when fis represented as neural network?
Backpropagation

e Efficiently calculates the gradient in a single backward pass of the neural network

e Automated differentiation packages have commands to quickly backpropagate
= In Pytorch, use backward()

We won't discuss details of backpropagation algorithm here;
see Deep Learning book by Goodfellow et al. or MLPR notes for more details

10
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Naive Deep Reinforcement Learning

e Tabular RL is unable to scale to large state or action spaces

e Discretisation is required for continuous state spaces

e Naive replacement of linear model with neural network is problematic:
e High correlation between consecutive experiences

e Moving target values in TD methods

n
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Solution Idea: Experience Replay

Replay buffer:

e Store most recent experience
tuples (s,a,r,s’) in FIFO buffer D

e Create training batches by
uniformly sampling from buffer Environment

e Random sampling “breaks”
correlation between experiences

Train

e |Loss defined over batch:

2
L(6:) = E(s,a,r,s’)NU(D) |:(I’ + v maE/JX Q(S” a: 0:) — Q(s, a; 90) :|

13
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Problem: Moving Targets

Target values computed through value function

r—i—fyméaxQ(S’,a;H)

= Target values change each time value function is modified

e Non-stationarity makes learning optimal # more difficult

e Require a way to make target values change less frequently
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Solution Idea: Target Networks

Use two sets of network parameters:

e ¢ for value network Q(s, a; 6)

e 0~ for target network Q(s,a; 07)
Use target network to compute update targets: r+ ~maxq O(s’,a’;07)

Change target network more slowly than value network:
e hard update: set 0~ < 0 every C time steps

e Or soft update: at each time step, move parameters slightly closer to the value
network: 6= « (1—7)0~ + 76

15



Deep Q-Networks [Mnih et al., 2015]

e Use replay buffer and target networks
= First successful application of deep neural networks to reinforcement learning

e Play Atari games beyond human level



Deep Q-Networks [Mnih et al., 2015]

For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;)
Fort=1,T do

Replay buffer —

Hard update —

With probability ¢ select a random action a,

otherwise select a, =argmax, Q(¢(s),a; 0)

Execute action a, in emulator and observe reward r, and image x; 4
Set s;41 =S¢,d¢,X¢+1 and preprocess ¢, ; =@ (s;11)

Store transition ((ﬁt,at,rt,qﬁtﬂ) in D

Sample random minibatch of transitions ¢-,aj,rj,¢j +1> from D

j if episode terminates at step j+1
Sety; = 7+ maxy Q<¢-+1,a’; 0‘) otherwise

j
2
Perform a gradient descent step on <yj -0 (gb ) 9) ) with respect to the
network parameters 0
Every C steps reset Q= Q



State Pre-Processing

Markov Property:
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State Pre-Processing

Markov Property:

Pr{St1, Res1 | St,At, St—1,At—1, -, S0, Ao} = Pr{St11, Rey1 | St, Ac}
Given below state of Breakout, does first-order Markov property hold?
No — Use as state the last 4

observations (frames) in order to
model the velocity of the ball




Video Pinball
Boxing
Breakout

Star Gunner
Robotank
Atlantis

Crazy Climber
Gopher

Name This Game
Krull

Assault

Road Runner
Kangaroo

Kung-Fu Master

Time Pilot
Enduro
Fishing Derby
Up and Down
Ice Hockey

Ghopper Gommand
Centipede

Bank Heist

River Raid

Zaxxon

Amidar

Alien

Venture

Seaquest

Double Dunk
Bowling

Ms. Pac-Man
Asteroids

Frostbite

Gravitar

Private Eye
Montezuma's Revenge

to2% [

i

At human-level or above

Below human-level

'P!!ili“ﬁﬁl

¥
H

Best linear learner]

T T T T T (T 1
200 300 400 500 600 1,000 4,500%

QITYT_q
’f$§§§§T
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e Exceeded human level performance in
most of the Atari games

e Fails in games with very sparse
rewards, like Montezuma'’s revenge
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Limitations of DQN

e No convergence guarantees in theory
e Sensitive to hyperparameters

e Only for discrete action space

20



DQN Hyperparameter Sensitivity in Enduro [Sprague, 2015]

v=09 ~v=095 ~=097

a = 0.0001

ad [ A A

a = 0.0002

L

a = 0.0005

a = 0.001

21



DQN Hyperparameter Sensitivity in Enduro [Sprague, 2015]

a = 0.0001
a = 0.0002
a = 0.0005

a = 0.001

7=09 =095 =097

o A

T L TR
L_aru Al ld

e The graphs display rewards of an agent

trained using various hyperparameters
in the Enduro game

21



DQN Hyperparameter Sensitivity in Enduro [Sprague, 2015]

a = 0.0001
a = 0.0002
a = 0.0005

a = 0.001

7=09 =095 =097

o A

T L TR
L_aru Al ld

e The graphs display rewards of an agent
trained using various hyperparameters
in the Enduro game

e Small learning rates might cause
agents to learn slowly

21



DQN Hyperparameter Sensitivity in Enduro [Sprague, 2015]

a = 0.0001
a = 0.0002
a = 0.0005

a = 0.001

7=09 =095 =097

o A

T L TR
L_aru Al ld

e The graphs display rewards of an agent
trained using various hyperparameters
in the Enduro game

e Small learning rates might cause
agents to learn slowly

e Large learning rates might cause value
networks to diverge

21



DQN Hyperparameter Sensitivity in Enduro [Sprague, 2015]

a = 0.0001

a = 0.0002

a = 0.0005

a = 0.001

7=09 =095 =097

o A

T L TR
L_aru Al ld

The graphs display rewards of an agent
trained using various hyperparameters
in the Enduro game

Small learning rates might cause
agents to learn slowly

Large learning rates might cause value
networks to diverge

Performance from different runs with
the same parameters can vary widely

21



Problem: Value Network Overestimation [Van Hasselt et al., 2016]

e Q-network tends to overestimate the true value of the agent

e Update target: r+ v maxq Q(s',a;67)
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Problem: Value Network Overestimation [Van Hasselt et al., 2016]

e Q-network tends to overestimate the true value of the agent
e Update target: r+ v maxq Q(s',a;67)
e Considering two random variables: E[max (X1, X3)] > max(E[X1], E[X3])

e max, Q(S',a; #~) overestimates the next value

Alien Space Invaders Time Pilot Zaxxon
2 20 2.5
% 8 DQN estimate
g 8 2.0 M“Nw 6
2 15
Q . 1.5 4
Q 6 M Double DQN estimate
=10 1.0 2
© Double DQN true value
> 4 0 DQN true value

0 50 100 150 200 0 50 100 150 200 O 50 100 150 200 O 50 100 150 200
Training steps (in millions)
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Solution Idea: Deep Double Q-Network

e Calculate the action that maximises the value network at next state
Qnext < arg maxq Q(s', a; 6)

e Use this action as input to the target network along with the next state
representation

y=r+ 'Yé(sla Qnext; 97)
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Solution Idea: Deep Double Q-Network

e Calculate the action that maximises the value network at next state
Qnext < arg maxq Q(s', a; 6)

e Use this action as input to the target network along with the next state
representation

y=r+ ’Yé(sla Qnext; 07)
Deep Double Q-Network:

y=r+~Q(s,arg max Q(s', a; 0); 6")

23



Deep Double Q-Network Results [Van Hasselt et al., 201

Video Pinball
Atlantis
Demon Attack
Breakout
Assault
Double Dunk
Robotank
Gopher
Boxing
Star Gunner
Road Runner
Krull
Crazy Climber
Kangaroo
Asterix
skDefenderss
sxPhoenixsx
Up and Down
Space Invaders
James Bond
Enduro
Kung-Fu Master
Wizard of Wor
Name This Game
Time Pilot
Bank Heist

BN Double DQN (tuned)
[ Double DQN

e Qutperformed DQN

e More accurate prediction of values
compared to DQN

e Still failed in more difficult games,
like Montezuma'’s revenge

24



Prioritised Experience Replay
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Prioritised Experience Replay

e Does uniformly sampling experience replay provide the best performance?
e Not all samples have equal importance

e Like prioritised sweeping in DP, choosing samples based on the TD-error can
improve performance

= Proportionally prioritise experiences with higher TD-error and correct updates
based on importance sampling ratio

e But prioritisation requires additional computation for each insertion, update and
removal

= Difficult to implement efficiently

25



Best Practices for Implementing Deep Q-Networks

Carefully consider the storage required for your experience

e Explore aggressively in the beginning

Decrease € as learning progresses

Periodically store your neural network parameters

Periodically store contents of your experience replay

Ensure that your gradients do not explode or vanish

26



Reading (Optional)

More on neural networks and backprop:

e Section 9.7 in RL book

e Book Deep Learning by lan Goodfellow, Yoshua Bengio, Aaron Courville
Free online: https://www.deeplearningbook.org
e MLPR course notes on
- Neural networks introduction

- Fitting and initializing neural networks
- Backpropagation of Derivatives

27


https://www.deeplearningbook.org
https://mlpr.inf.ed.ac.uk/2021/notes/w7a_neural_net_intro.html
https://mlpr.inf.ed.ac.uk/2021/notes/w7c_neural_net_fitting.html
https://mlpr.inf.ed.ac.uk/2021/notes/w7d_backprop.html

Reading (Optional)

Papers:

e Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves et al. "Human-level control through deep
reinforcement learning” Nature 518, no. 7540 (2015): 529

e Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep Reinforcement Learning
with Double Q-Learning” In AAAI, vol. 2, p. 5. 2016

e Schaul, Tom, John Quan, loannis Antonoglou, and David Silver. "Prioritized
experience replay”” arXiv preprint arXiv:1511.05952 (2015)
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