Lecture Outline

- Problems with experience replay
- Asynchronous methods for deep RL
- Deep actor-critic methods
- Deep deterministic policy gradient
- Debugging deep RL
Recap: DQN
Recap: Deep Q-Network (DQN)

Deep Q-Network:
- Approximate state-action values using a neural network
- Stabilise training by:
 - Sampling batches from experience replay buffer
 - Using separate network to compute target values
- Further optimisation by:
 - Double DQN to reduce overestimation of Q-values
 - Prioritised replay to increase likelihood of sampling valuable experience
Problems of DQN

- Requires large storage for replay buffer (e.g. Atari game requires ≈56GB, cannot fit in a modern PC)
- Use of replay buffer requires off-policy method (why?)
- Not straightforward handling of multi-step returns (why?)
Problems of DQN

- Requires large storage for replay buffer (e.g. Atari game requires \(\approx 56 \) GB, cannot fit in a modern PC)
- Use of replay buffer requires off-policy method (why?)
- Not straightforward handling of multi-step returns (why?)

Is there an alternative approach to break correlations of consecutive experience?
Asynchronous Training
Asynchronous Framework

Create

n parallel "worker" threads with own environment copies and shared global network

Each worker interacts independently with its environment

Asynchronous updates: Periodically, each worker updates the global network parameters based on its local experiences.
• Create n parallel “worker” threads with own environment copies and shared global network
Asynchronous Framework

- Create \(n \) parallel “worker” threads with own environment copies and shared global network
- Each worker interacts independently with its environment
Asynchronous Framework

- Create n parallel “worker” threads with own environment copies and shared global network
- Each worker interacts independently with its environment
- **Asynchronous updates:** Periodically, each worker updates the global network parameters based on its local experiences
Benefits of Asynchronous Framework

- Asynchronous updating is another way of breaking correlation in samples
 ⇒ Means we don’t need replay buffer!
Benefits of Asynchronous Framework

- Asynchronous updating is another way of breaking correlation in samples → Means we don’t need replay buffer!
- Better handling of sequential data: can use on-policy and multi-step returns
Asynchronous updating is another way of breaking correlation in samples
⇒ Means we don’t need replay buffer!

Better handling of sequential data: can use on-policy and multi-step returns

runs on normal multi-threaded CPUs
Benefits of Asynchronous Framework

- Asynchronous updating is another way of breaking correlation in samples
 \(\Rightarrow \) Means we don’t need replay buffer!

- Better handling of sequential data: can use on-policy and multi-step returns

- Runs on normal multi-threaded CPUs

- Alternative: parallel, vectorised environments
Asynchronous 1-Step Q-Learning [Mnih et al., 2016]

\[\text{repeat} \]

Take action \(a \) with \(\epsilon \)-greedy policy based on \(Q(s, a; \theta) \)

Receive new state \(s' \) and reward \(r \)

\[
y = \begin{cases}
 r & \text{for terminal } s' \\
 r + \gamma \max_{a'} Q(s', a'; \theta^-) & \text{for non-terminal } s'
\end{cases}
\]

Accumulate gradients wrt \(\theta \): \(d\theta \leftarrow d\theta + \frac{\partial (y-Q(s,a;\theta))^2}{\partial \theta} \)

\(s = s' \)

\(T \leftarrow T + 1 \) and \(t \leftarrow t + 1 \)

\[\text{if } T \mod I_{\text{target}} == 0 \text{ then} \]

\[\text{Update the target network } \theta^- \leftarrow \theta \]

\[\text{end if} \]

\[\text{if } t \mod I_{\text{AsyncUpdate}} == 0 \text{ or } s \text{ is terminal then} \]

\[\text{Perform asynchronous update of } \theta \text{ using } d\theta. \]

\[\text{Clear gradients } d\theta \leftarrow 0. \]

\[\text{end if} \]

\[\text{until } T > T_{\text{max}} \]
More workers (parallel threads) lead to faster learning
More workers (parallel threads) lead to faster learning

- Workers explore different parts of the environment
- Workers can use different exploration policies (e.g. ϵ-values)
Deep Actor-Critic
Recap: Actor-Critic Algorithm

Objective: Find parameters θ which maximise $J = V^{\pi_\theta}(s)$
Recap: Actor-Critic Algorithm

Objective: Find parameters θ which maximise $J = V^{\pi_\theta}(s)$

- Estimate gradient $\nabla \theta J$ using the policy gradient theorem:

$$\nabla \theta J = \mathbb{E}_{s \sim d(s), a \sim \pi}[R \nabla \theta \log \pi_\theta(a|s)]$$
Recap: Actor-Critic Algorithm

Objective: Find parameters θ which maximise $J = V^{\pi_\theta}(s)$

- Estimate gradient ∇J using the policy gradient theorem:
 \[
 \nabla J = \mathbb{E}_{s \sim d(s), a \sim \pi} [R \nabla \log \pi_\theta(a|s)]
 \]

- Approximate the return R using a critic \hat{V}_w with parameters w
 \[
 \nabla J = \mathbb{E}_{s \sim d(s), a \sim \pi} [(r + \hat{V}_w(s')) \nabla \log \pi_\theta(a|s)]
 \]

Train the critic by minimising the TD-error
Recap: Actor-Critic Algorithm

Objective: Find parameters θ which maximise $J = V^{\pi_\theta}(s)$

- Estimate gradient ∇J using the policy gradient theorem:
 \[\nabla J = E_{s \sim d(s), a \sim \pi}[R \nabla \log \pi_\theta(a|s)] \]

- Approximate the return R using a critic \hat{V}_w with parameters w
 \[\nabla J = E_{s \sim d(s), a \sim \pi}[(r + \hat{V}_w(s'))\nabla \log \pi_\theta(a|s)] \]

Train the critic by minimising the TD-error

- Subtract a baseline function in order to reduce the variance of the estimation
 \[\nabla J = E_{s \sim d(s), a \sim \pi}[(r + \hat{V}_w(s') - \hat{V}_w(s))\nabla \log \pi_\theta(a|s)] \]
Asynchronous Advantage Actor-Critic (A3C) [Mnih et al., 2016]

repeat
 Reset gradients: $d\theta \leftarrow 0$ and $d\theta_v \leftarrow 0$.
 Synchronize thread-specific parameters $\theta' = \theta$ and $\theta'_v = \theta_v$
 $t_{start} = t$
 Get state s_t
 repeat
 Perform a_t according to policy $\pi(a_t|s_t; \theta')$
 Receive reward r_t and new state s_{t+1}
 $t \leftarrow t + 1$
 $T \leftarrow T + 1$
 until terminal s_t or $t - t_{start} \geq t_{max}$

 $R = \begin{cases}
 0 & \text{for terminal } s_t \\
 V(s_t, \theta'_v) & \text{for non-terminal } s_t \end{cases}$

 for $i \in \{t - 1, \ldots, t_{start}\}$ do
 $R \leftarrow r_i + \gamma R$
 Accumulate gradients wrt θ': $d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i|s_i; \theta')(R - V(s_i; \theta'_v))$
 Accumulate gradients wrt θ'_v: $d\theta_v \leftarrow d\theta_v + \partial (R - V(s_i; \theta'_v))^2 / \partial \theta'_v$
 end for
 Perform asynchronous update of θ using $d\theta$ and of θ_v using $d\theta_v$.
until $T > T_{max}$
Entropy Regularisation

- **Entropy** of a stochastic policy

\[H[\pi(a|s)] = \mathbb{E}_{a \sim \pi(a|s)}[- \log \pi(a|s)] = - \sum_a \pi(a|s) \log \pi(a|s) \]

The entropy is maximised when the policy distribution is uniform.
Entropy Regularisation

• **Entropy** of a stochastic policy

\[H[\pi(a|s)] = E_{a \sim \pi(a|s)}[-\log \pi(a|s)] = -\sum_a \pi(a|s) \log \pi(a|s) \]

The entropy is maximised when the policy distribution is uniform

• Add an entropy regularisation in A3C

\[L_{actor} = -(R - V(s)) \log \pi(a|s) - \beta H[\pi(a|s)] \]

Encourage exploration by maximising entropy while minimising policy loss
Deep Deterministic Policy Gradient
• Can we use A3C?
 - *How?*
• Can we use A3C?
 - *How?*

• Can we use DQN and discretize the action spaces?
 - *What is the disadvantage?*
• Can we use A3C?
 - How?

• Can we use DQN and discretize the action spaces?
 - What is the disadvantage?

• How do we compute $\text{argmax}_a Q(s, a)$ in continuous action spaces?
Deterministic Policy Gradient

- Extension of policy gradient to *deterministic* policies $\mu : S \to \mathbb{R}^{|A|}$

$$\nabla_{\theta\mu} V(s_0) = \mathbb{E}_{s \sim d(s)} \left[\nabla_a Q(s, \mu(s|\theta^\mu)|\theta^Q) \nabla_{\theta\mu} \mu(s) \right]$$
Deterministic Policy Gradient

- Extension of policy gradient to deterministic policies $\mu : S \rightarrow \mathbb{R}^{|A|}$
 \[
 \nabla_{\theta^\mu} V(s_0) = \mathbb{E}_{s \sim d(s)} \left[\nabla_a Q(s, \mu(s|\theta^\mu)|\theta^Q) \nabla_{\theta^\mu} \mu(s) \right]
 \]
- It assumes continuous actions. The actor loss is:
 \[
 L_a = -Q(s, \mu(s|\theta^\mu))
 \]
Deterministic Policy Gradient

- Extension of policy gradient to \textit{deterministic} policies $\mu : S \to \mathbb{R}^{|A|}$
 \[
 \nabla_{\theta^\mu} V(s_0) = \mathbb{E}_{s \sim d(s)} \left[\nabla_a Q(s, \mu(s|\theta^\mu)|\theta^Q) \nabla_{\theta^\mu} \mu(s) \right]
 \]
- It assumes continuous actions. The actor loss is:
 \[
 L_a = -Q(s, \mu(s|\theta^\mu))
 \]
- Can be extended to discrete environments using mechanisms that produce differentiable samples from categorical distribution (e.g. \textit{Gumbel-Softmax})
Deterministic Policy Gradient

- Extension of policy gradient to deterministic policies $\mu : S \to \mathbb{R}^{|A|}$

$$\nabla_{\theta^\mu} V(s_0) = \mathbb{E}_{s \sim d(s)} \left[\nabla_a Q(s, \mu(s|\theta^\mu)|\theta^Q) \nabla_{\theta^\mu} \mu(s) \right]$$

- It assumes continuous actions. The actor loss is:

$$L_a = -Q(s, \mu(s|\theta^\mu))$$

- Can be extended to discrete environments using mechanisms that produce differentiable samples from categorical distribution (e.g. Gumbel-Softmax)

- Train the critic by minimising the TD-error:

$$L_c = \frac{1}{2} \left(r + \gamma Q_{target}(s', \mu_{target}(s'|\theta^{\mu'})|\theta^{Q'}) - Q(s, a|\theta^Q) \right)^2$$
Deterministic Policy Gradient – Diagram
• Q-learning uses ϵ-greedy

• A3C samples from a Softmax distribution and exploration is encouraged through an entropy-based term in the actor’s loss

• DDPG adds random noise to the output of the actor (e.g. Gaussian noise, Ornstein–Uhlenbeck noise)

$$a = \mu(s|\theta^\mu) + \mathcal{N}$$
for episode = 1, M do
 Initialize a random process \(\mathcal{N} \) for action exploration
 Receive initial observation state \(s_1 \)
 for \(t = 1, T \) do
 Select action \(a_t = \mu(s_t|\theta^\mu) + \mathcal{N}_t \) according to the current policy and exploration noise
 Execute action \(a_t \) and observe reward \(r_t \) and observe new state \(s_{t+1} \)
 Store transition \((s_t, a_t, r_t, s_{t+1})\) in \(R \)
 Sample a random minibatch of \(N \) transitions \((s_i, a_i, r_i, s_{i+1})\) from \(R \)
 Set \(y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})) \)
 Update critic by minimizing the loss: \(L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^Q))^2 \)
 Update the actor policy using the sampled policy gradient:
 \[
 \nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_i \nabla_a Q(s, a|\theta^Q)|_{s=s_i, a=\mu(s_i)} \nabla_{\theta^{\mu}} \mu(s|\theta^\mu)|_{s_i}
 \]
 Update the target networks:
 \[
 \theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau) \theta^{Q'} \\
 \theta^{\mu'} \leftarrow \tau \theta^\mu + (1 - \tau) \theta^{\mu'}
 \]
Sample Efficiency of DDPG [Wang et al., 2017]

DDPG converges in 1M steps, A3C requires 150M steps
Debugging Deep RL
Debugging Deep RL Algorithms

- Start with simple environments that are quick to train on
- Log everything (Frequently)!
 - In particular, keep track of:
 - Performance
 - Exploration hyperparameters
 - Loss function components
 - Gradients (Ensure they do not explode)
- Save your logs in a format that can be used for further processing
- Use tools that automatically displays your logs as Figures, e.g. Tensorboard
Debugging Deep RL Algorithms

- Policy Gradient
 - Policy should not get too close to deterministic policies early on
 - Track the magnitude of the policy gradient loss and entropy loss

- Q-Learning based methods
 - Track learning rate schedules
 - Track exploration schedule
 - Check magnitude of the gradients

- Visualize the policies during evaluation

Going Forward ...

• ~ 3 weeks left for the coursework
• Labs still this week (W7) and next week (W8)
 • Come with questions prepared!
• If you are unfamiliar with PyTorch, check out the provided notebook from the labs and documentation and tutorials on https://pytorch.org
Any Questions?