Reinforcement Learning

Deep Reinforcement Learning |l

Trevor Mclnroe
5 March 2024

HE UNIVERSITY of EDINBURGH

nformatics

Lecture Outline

Problems with experience replay

Asynchronous methods for deep RL

e Deep actor-critic methods

Deep deterministic policy gradient

Debugging deep RL

Recap: DQN

Recap: Deep Q-Network (DQN)

Deep Q-Network:

e Approximate state-action values using a neural network

e Stabilise training by:
e Sampling batches from experience replay buffer

e Using separate network to compute target values

e Further optimisation by:

e Double DQN to reduce overestimation of Q-values

e Prioritised replay to increase likelihood of sampling
valuable experience

Problems of Experience Replay Buffer

e Requires large storage for replay buffer
(e.g. Atari game requires ~56GB of RAM)

e Use of replay buffer requires off-policy method (why?)

® Not straightforward handling of multi-step returns (why?)

Problems of Experience Replay Buffer

e Requires large storage for replay buffer
(e.g. Atari game requires ~56GB of RAM)

e Use of replay buffer requires off-policy method (why?)

® Not straightforward handling of multi-step returns (why?)

Is there an alternative approach to break correlations of consecutive experience?

Asynchronous Training

Asynchronous Framework

Gilobal Network

Policy Ti(s) /‘ V(s)

Worker 1 Worker 2 Worker 3 Worker n
p S p N > p .
‘ Environment 1 ‘ ‘ Envi 2 ‘ i 3 | ... Environmentn
\ y < 4 < 4

Asynchronous Framework

Gilobal Network

S e Create n parallel “worker” threads with

own environment copies and shared global
network

Worker 1 Worker 2 Worker 3 Worker n

{ { { ¢

> > a >
Environment n
4 < J

‘ Environment 1 ‘

Envi 2 ‘ i 3

Asynchronous Framework

Gilobal Network

=N e Create n parallel “worker” threads with

own environment copies and shared global
network

e Each worker interacts independently with

h Con e - its environment
9 . | —

Worker 1 Worker 2 Worker 3 Worker n

{ { { ¢
p > p > a >
Envi 2 ‘ il 3 ... Environment n
L 4 A 4 < 4

‘ Environment 1 ‘

Asynchronous Framework

Gilobal Network

e Create n parallel “worker” threads with
own environment copies and shared global
network

e Each worker interacts independently with

its environment
s J 6 [€)= € =
| . | . | | e Asynchronous updates:
4 — e T Periodically, each worker updates the

Worker 1 Worker 2 Worker 3 Worker n

I

global network parameters based on its

local experiences

@

p >
‘ Environment 1 ‘
€ 4

Environment n }

Benefits of Asynchronous Framework

e Asynchronous updating is another way of breaking correlation in samples

= Means we don't need replay buffer!

Benefits of Asynchronous Framework

e Asynchronous updating is another way of breaking correlation in samples

= Means we don't need replay buffer!

e Better handling of sequential data: can use on-policy and multi-step returns

Benefits of Asynchronous Framework

e Asynchronous updating is another way of breaking correlation in samples

= Means we don't need replay buffer!

e Better handling of sequential data: can use on-policy and multi-step returns

e Runs on normal multi-threaded CPUs

Benefits of Asynchronous Framework

Asynchronous updating is another way of breaking correlation in samples

= Means we don't need replay buffer!

Better handling of sequential data: can use on-policy and multi-step returns

e Runs on normal multi-threaded CPUs

Alternative: parallel, vectorised environments

Asynchronous 1-Step Q-Learning [Mnih et al., 2016]

repeat
Take action a with e-greedy policy based on Q(s, a; 0)
Receive new state s’ and reward 7

[for terminal s’
Y= r+vymax, Q(s',a;07) for non-terminal s’
. 2
Accumulate gradients wrt 0: df < df + w
0 for value network s— g

T+ T+1landt<+t+1

0~ for target network i 7 mod Irarge: —— O then

6/0~ are global shared Update the target network 6~ < 6
end if
between workers ift mod Iasyncupdate == 0 or s is terminal then

Perform asynchronous update of 6 using df.
Clear gradients df < 0.
end if
until 7' > Trnae

More Workers, Faster Learning

20 Pong
— 1-step Q, 1 threads
15 — 1-step Q, 2 threads
More workers (parallel threads) lead to s e e
i 0 1-Step 8' 16tt[1ea Z
faster learning -step Q, 16 threads
5
GLJ 0
o
O
V. _s5
-10
-15
-20
-25
0 2 4 6 8 10 12 14

Training time (hours)

More Workers, Faster Learning

20 Pong
— 1-step Q, 1 threads
15 — 1-step Q, 2 threads
More workers (parallel threads) lead to B
. 10 i ’
faster learning ST
5
e Workers explore different parts of the
o 0
environment S
Vo5
e Workers can use different exploration 10
policies (e.g. e-values) s
=20
-25
0 2 4 6 8 10 12 14

Training time (hours)

Deep Actor-Critic

Recap: Actor-Critic Algorithm

Objective: Find parameters 6 maximising J = V™ (s)

Recap: Actor-Critic Algorithm

Objective: Find parameters 6 maximising J = V™ (s)
e Estimate gradient VyJ using the policy gradient theorem:
Vod = IE(s,a,r,s/)NB[Rs Vg log W@(a‘s)]

Recap: Actor-Critic Algorithm

Objective: Find parameters 6 maximising J = V™ (s)
e Estimate gradient VyJ using the policy gradient theorem:
Vod = IE(s,a,r,s/)NB[Rs Vg log W@(a‘s)]

e Approximate Ry, the return at state s, with a critic V,, with parameters w

Vod = Esareres|(r + Vin(s')) Vg log m(a\s)}

Train the critic by minimising the TD-error L(w) = ESNB[(RS — Vw(s))z}

Recap: Actor-Critic Algorithm

Objective: Find parameters 6 maximising J = V™ (s)
e Estimate gradient VyJ using the policy gradient theorem:
Vod = IE(s,a,r,s/)NB[Rs Vg log W@(a‘s)]

e Approximate Ry, the return at state s, with a critic V,, with parameters w
Vo = E(s or.51yos [(r + V() Vg log m(a\s)}
Train the critic by minimising the TD-error L(w) = ESNB[(RS — Vw(s))z}

e Subtract a baseline function in order to reduce the variance of the estimation

Vod = IE(s,a,r,s’)r\/l@ [(I’ + VW(S/) - VW(S))V9 log 71'9(3‘5)}

Asynchronous Advantage Actor-Critic (A3C) [Mnih et al., 2016]

repeat
Reset gradients: df < 0 and df,, < 0.
Synchronize thread-specific parameters ¢’ = 6 and 0., = 0,

tstart =1
Get state sy
repeat

Perform a; according to policy 7 (a¢|s:; 0")
Receive reward r; and new state S¢4+1

t—t+1
T+T+1
until terminal s; or ¢ — t5tart == tmax
R— 0 for terminal s¢
T Vs, 0) for non-terminal s;// Bootstrap from last state
forie {t—1,...,tstart} do
R+ ri+9R

Accumulate gradients wrt 6”: df < df + Vs log m(as|si; 0') (R — V (si;65,))
Accumulate gradients wrt 0.,: df, < df, + 0 (R — V(s:;6,))* /06,
end for
Perform asynchronous update of € using df and of 6,, using d6,,.
until T’ > Trnae

Entropy Regularisation

e Entropy of a stochastic policy

Hm(als)] = Eqn(als)[— log (als)] = = > _ w(als) log m(als)

a

The entropy is maximised when the policy distribution is uniform

200
08

175
[X4

150
06 |
125 o
05 |
100 I
04 [

075
03

050

[
02 L \

00

10

Entropy Regularisation

e Entropy of a stochastic policy

Hm(als)] = Eqn(als)[— log (als)] = = > _ w(als) log m(als)

a

The entropy is maximised when the policy distribution is uniform

200
08

175
[X4

150
06 |
125 o
05 |
100 I
04 [

075
03

050

[
0z |-

e Add an entropy regularisation in A3C
Lactor = —(R — V/(s)) log m(als) — S H|m(als)]
Encourage exploration by maximising entropy while minimising policy loss

10

Results of Asynchronous Methods [Mnih et al., 2016]

Score

16000 Beamrider 600
— DQN
O i-siep SARSA >00
12000 — P
—— n-step Q 400
10000 A3C
v
8000 S 300
77 4 »n
6000 /& 200
4000
2000 100
0

0 2 4 6 8 10 12 14
Training time (hours)

Breakout 30 Pong
— DQN
— 1-step Q 20
—— 1-step SARSA
—— n-step Q
A3C 10
o
0
%)
-10 — DQN
/ — 1-stepQ
— 1-st ARSA
~20 step SARS,
—— n-step Q
A3C
-30
2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Training time (hours) Training time (hours)

11

Deep Deterministic Policy Gradient

Reinforcement Learning in Continuous Action Spaces

e For example, consider a domain in which we control an autonomous car with action
space A = {steer € [—m, 7], throttle € [-1,1]}

12

Reinforcement Learning in Continuous Action Spaces

e For example, consider a domain in which we control an autonomous car with action
space A = {steer € [—m, 7], throttle € [-1,1]}

e We could discretize the action space
- what is the disadvantage?

12

Reinforcement Learning in Continuous Action Spaces

e For example, consider a domain in which we control an autonomous car with action
space A = {steer € [—m, 7], throttle € [-1,1]}

e We could discretize the action space
- what is the disadvantage?

e Can we use A3C?
- How?

12

Reinforcement Learning in Continuous Action Spaces

For example, consider a domain in which we control an autonomous car with action
space A = {steer € [—m, 7], throttle € [-1,1]}

We could discretize the action space
- what is the disadvantage?

e Can we use A3C?
- How?

How do we compute argmax,Q(s, a) in continuous action spaces?

12

Deterministic Policy Gradient

e Extension of policy gradient to deterministic policies yi : S — RIAI

VoV (50) = Esr(e) [VaQ(s, 1(s16")169) Vorepu(s)]

13

Deterministic Policy Gradient

e Extension of policy gradient to deterministic policies yi : S — RIAI

VoV (50) = Esr(e) [VaQ(s, 1(s16")169) Vorepu(s)]

e |t assumes continuous actions. The actor loss is:

La = —Q(s, u(s]0"))

13

Deterministic Policy Gradient

e Extension of policy gradient to deterministic policies yi : S — RIAI

VoV (50) = Esr(e) [VaQ(s, 1(s16")169) Vorepu(s)]

e |t assumes continuous actions. The actor loss is:

La = —Q(s, u(s]0"))

e Can be extended to discrete environments using mechanisms that produce
differentiable samples from categorical distribution (e.g. Gumbel-Softmax)

13

Deterministic Policy Gradient

e Extension of policy gradient to deterministic policies yi : S — RIAI
VoV (50) = Esr(e) [VaQ(s, 1(s16")169) Vorepu(s)]
e |t assumes continuous actions. The actor loss is:
Lo = —Q(s, u(s]6"))

e Can be extended to discrete environments using mechanisms that produce
differentiable samples from categorical distribution (e.g. Gumbel-Softmax)

e Train the critic by minimising the TD-error:

1 ! ! 2
Le = 5 (r + fYQtarget(SlyNtarget(slwu)‘GQ) - Q(S, 3’9(\))>

13

Deterministic Policy Gradient — Diagram

{

Environment

»

Reward

Actor

@

BackProp

NG

BackProp

A

TD error »

Critic

Maximize
Q-values

A

14

Exploration

e Q-learning uses e-greedy

e A3C samples from a Softmax distribution and exploration is encouraged through an
entropy-based term in the actor's loss

e DDPG adds random noise to the output of the actor (e.g. Gaussian noise,
Ornstein—-Uhlenbeck noise)

a=p(s|0")+ N

15

Deep Deterministic Policy Gradient (DDPG) [Lillicrap et al., 2016]

for episode = 1, M do

Initialize a random process A for action exploration

Receive initial observation state s

fort=1,Tdo
Select action a; = p(s¢|60*) + N; according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state S;1
Store transition (s¢, ag, r¢, S¢41) in R
Sample a random minibatch of N transitions (s;, a;, 74, $;+1) from R
Sety; = 1 +7Q (si11, 1/ (5:41]0%)[69)
Update critic by minimizing the loss: L = % >y — Qi ai|0Q))2
Update the actor policy using the sampled policy gradient:

1
VG“J ~ N Z VGQ(S: an)|s=sl,a=u(s,~)V@“/L(Swﬂﬂsi

Update the target networks:
09" 769 + (1 —7)09
0" 70" + (1 — 7)o"
16

Sample Efficiency of DDPG [Wang et al., 2017]

Cheetah (9-DoF /6-dim. Actions)

Cheetah
1
y —— Trust-TIS
i,’ TRUST-A3C
. -- TIS
0 —— ACER
) ---- A3C
0 1

Million Steps

DDPG converges in 1M steps, A3C requires 150M steps

17

Debugging Deep RL

Debugging Deep RL Algorithms

e Start with simple environments that are quick to train on

e Log everything (Frequently)!
e In particular, keep track of :
e Performance

e Exploration hyperparameters
e Loss function components

e Gradients (Ensure they do not explode)

e Save your logs in a format that can be used for further processing

e Use tools that automatically displays your logs as Figures, e.g. Wandb, Tensorboard

18

Debugging Deep RL Algorithms

e Policy Gradient
e Policy should not get too close to deterministic policies early on

e Track the magnitude of the policy gradient loss and entropy loss

e Q-Learning based methods
e Track learning rate schedules

e Track exploration schedule

e Check magnitude of the gradients

e Visualize the policies during evaluation

19

Reading (Optional)

e Volodymyr, Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. " Asynchronous methods

for deep reinforcement learning.” In International Conference on Machine Learning, pp.
1928-1937, 2016

e John, Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
"High-dimensional continuous control using generalized advantage estimation.” arXiv
preprint arXiv:1506.02438 (2015)

e Timothy P., Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. " Continuous control with deep
reinforcement learning.” arXiv preprint arXiv:1509.02971 (2015)

20

Going Forward ...

o ~ 3 weeks left for the coursework

e Labs this week (W7) and next week (W8)
e Come with questions prepared!

e |f you are unfamiliar with PyTorch, check out the provided notebook from the labs
and further documentation and tutorials on https://pytorch.org

21

https://pytorch.org

Any Questions?

	Recap: DQN
	Asynchronous Training
	Deep Actor-Critic
	Deep Deterministic Policy Gradient
	Debugging Deep RL

