
Reinforcement Learning

Deep Reinforcement Learning II

Trevor McInroe

5 March 2024

Lecture Outline

• Problems with experience replay

• Asynchronous methods for deep RL

• Deep actor-critic methods

• Deep deterministic policy gradient

• Debugging deep RL

1

Recap: DQN

Recap: Deep Q-Network (DQN)

Deep Q-Network:

• Approximate state-action values using a neural network

• Stabilise training by:
• Sampling batches from experience replay buffer

• Using separate network to compute target values

• Further optimisation by:
• Double DQN to reduce overestimation of Q-values

• Prioritised replay to increase likelihood of sampling

valuable experience

2

Problems of Experience Replay Buffer

• Requires large storage for replay buffer

(e.g. Atari game requires ≈56GB of RAM)

• Use of replay buffer requires off-policy method (why?)

• Not straightforward handling of multi-step returns (why?)

Is there an alternative approach to break correlations of consecutive experience?

3

Problems of Experience Replay Buffer

• Requires large storage for replay buffer

(e.g. Atari game requires ≈56GB of RAM)

• Use of replay buffer requires off-policy method (why?)

• Not straightforward handling of multi-step returns (why?)

Is there an alternative approach to break correlations of consecutive experience?

3

Asynchronous Training

Asynchronous Framework

• Create n parallel “worker” threads with

own environment copies and shared global

network

• Each worker interacts independently with

its environment

• Asynchronous updates:

Periodically, each worker updates the

global network parameters based on its

local experiences

4

Asynchronous Framework

• Create n parallel “worker” threads with

own environment copies and shared global

network

• Each worker interacts independently with

its environment

• Asynchronous updates:

Periodically, each worker updates the

global network parameters based on its

local experiences

4

Asynchronous Framework

• Create n parallel “worker” threads with

own environment copies and shared global

network

• Each worker interacts independently with

its environment

• Asynchronous updates:

Periodically, each worker updates the

global network parameters based on its

local experiences

4

Asynchronous Framework

• Create n parallel “worker” threads with

own environment copies and shared global

network

• Each worker interacts independently with

its environment

• Asynchronous updates:

Periodically, each worker updates the

global network parameters based on its

local experiences

4

Benefits of Asynchronous Framework

• Asynchronous updating is another way of breaking correlation in samples

⇒ Means we don’t need replay buffer!

• Better handling of sequential data: can use on-policy and multi-step returns

• Runs on normal multi-threaded CPUs

• Alternative: parallel, vectorised environments

5

Benefits of Asynchronous Framework

• Asynchronous updating is another way of breaking correlation in samples

⇒ Means we don’t need replay buffer!

• Better handling of sequential data: can use on-policy and multi-step returns

• Runs on normal multi-threaded CPUs

• Alternative: parallel, vectorised environments

5

Benefits of Asynchronous Framework

• Asynchronous updating is another way of breaking correlation in samples

⇒ Means we don’t need replay buffer!

• Better handling of sequential data: can use on-policy and multi-step returns

• Runs on normal multi-threaded CPUs

• Alternative: parallel, vectorised environments

5

Benefits of Asynchronous Framework

• Asynchronous updating is another way of breaking correlation in samples

⇒ Means we don’t need replay buffer!

• Better handling of sequential data: can use on-policy and multi-step returns

• Runs on normal multi-threaded CPUs

• Alternative: parallel, vectorised environments

5

Asynchronous 1-Step Q-Learning [Mnih et al., 2016]

6

θ for value network

θ− for target network

θ/θ− are global shared

between workers

More Workers, Faster Learning

More workers (parallel threads) lead to

faster learning

• Workers explore different parts of the

environment

• Workers can use different exploration

policies (e.g. ε-values)

7

More Workers, Faster Learning

More workers (parallel threads) lead to

faster learning

• Workers explore different parts of the

environment

• Workers can use different exploration

policies (e.g. ε-values)

7

Deep Actor-Critic

Recap: Actor-Critic Algorithm

Objective: Find parameters θ maximising J = V πθ(s)

• Estimate gradient ∇θJ using the policy gradient theorem:

∇θJ = E(s,a,r ,s′)∼B[Rs ∇θ log πθ(a|s)]

• Approximate Rs , the return at state s, with a critic V̂w with parameters w

∇θJ = E(s,a,r ,s′)∼B

[
(r + V̂w (s ′))∇θ log πθ(a|s)

]
Train the critic by minimising the TD-error L(w) = Es∼B

[
(Rs − V̂w (s))2

]
• Subtract a baseline function in order to reduce the variance of the estimation

∇θJ = E(s,a,r ,s′)∼B

[
(r + V̂w (s ′)− V̂w (s))∇θ log πθ(a|s)

]

8

Recap: Actor-Critic Algorithm

Objective: Find parameters θ maximising J = V πθ(s)

• Estimate gradient ∇θJ using the policy gradient theorem:

∇θJ = E(s,a,r ,s′)∼B[Rs ∇θ log πθ(a|s)]

• Approximate Rs , the return at state s, with a critic V̂w with parameters w

∇θJ = E(s,a,r ,s′)∼B

[
(r + V̂w (s ′))∇θ log πθ(a|s)

]
Train the critic by minimising the TD-error L(w) = Es∼B

[
(Rs − V̂w (s))2

]
• Subtract a baseline function in order to reduce the variance of the estimation

∇θJ = E(s,a,r ,s′)∼B

[
(r + V̂w (s ′)− V̂w (s))∇θ log πθ(a|s)

]

8

Recap: Actor-Critic Algorithm

Objective: Find parameters θ maximising J = V πθ(s)

• Estimate gradient ∇θJ using the policy gradient theorem:

∇θJ = E(s,a,r ,s′)∼B[Rs ∇θ log πθ(a|s)]

• Approximate Rs , the return at state s, with a critic V̂w with parameters w

∇θJ = E(s,a,r ,s′)∼B

[
(r + V̂w (s ′))∇θ log πθ(a|s)

]
Train the critic by minimising the TD-error L(w) = Es∼B

[
(Rs − V̂w (s))2

]

• Subtract a baseline function in order to reduce the variance of the estimation

∇θJ = E(s,a,r ,s′)∼B

[
(r + V̂w (s ′)− V̂w (s))∇θ log πθ(a|s)

]

8

Recap: Actor-Critic Algorithm

Objective: Find parameters θ maximising J = V πθ(s)

• Estimate gradient ∇θJ using the policy gradient theorem:

∇θJ = E(s,a,r ,s′)∼B[Rs ∇θ log πθ(a|s)]

• Approximate Rs , the return at state s, with a critic V̂w with parameters w

∇θJ = E(s,a,r ,s′)∼B

[
(r + V̂w (s ′))∇θ log πθ(a|s)

]
Train the critic by minimising the TD-error L(w) = Es∼B

[
(Rs − V̂w (s))2

]
• Subtract a baseline function in order to reduce the variance of the estimation

∇θJ = E(s,a,r ,s′)∼B

[
(r + V̂w (s ′)− V̂w (s))∇θ log πθ(a|s)

]
8

Asynchronous Advantage Actor-Critic (A3C) [Mnih et al., 2016]

9

Entropy Regularisation

• Entropy of a stochastic policy

H[π(a|s)] = Ea∼π(a|s)[− log π(a|s)] = −
∑
a

π(a|s) log π(a|s)

The entropy is maximised when the policy distribution is uniform

• Add an entropy regularisation in A3C

Lactor = −(R − V (s)) log π(a|s)− βH[π(a|s)]

Encourage exploration by maximising entropy while minimising policy loss

10

Entropy Regularisation

• Entropy of a stochastic policy

H[π(a|s)] = Ea∼π(a|s)[− log π(a|s)] = −
∑
a

π(a|s) log π(a|s)

The entropy is maximised when the policy distribution is uniform

• Add an entropy regularisation in A3C

Lactor = −(R − V (s)) log π(a|s)− βH[π(a|s)]

Encourage exploration by maximising entropy while minimising policy loss

10

Results of Asynchronous Methods [Mnih et al., 2016]

11

Deep Deterministic Policy Gradient

Reinforcement Learning in Continuous Action Spaces

• For example, consider a domain in which we control an autonomous car with action

space A = {steer ∈ [−π, π], throttle ∈ [−1, 1]}

• We could discretize the action space

- what is the disadvantage?

• Can we use A3C?

- How?

• How do we compute argmaxaQ(s, a) in continuous action spaces?

12

Reinforcement Learning in Continuous Action Spaces

• For example, consider a domain in which we control an autonomous car with action

space A = {steer ∈ [−π, π], throttle ∈ [−1, 1]}
• We could discretize the action space

- what is the disadvantage?

• Can we use A3C?

- How?

• How do we compute argmaxaQ(s, a) in continuous action spaces?

12

Reinforcement Learning in Continuous Action Spaces

• For example, consider a domain in which we control an autonomous car with action

space A = {steer ∈ [−π, π], throttle ∈ [−1, 1]}
• We could discretize the action space

- what is the disadvantage?

• Can we use A3C?

- How?

• How do we compute argmaxaQ(s, a) in continuous action spaces?

12

Reinforcement Learning in Continuous Action Spaces

• For example, consider a domain in which we control an autonomous car with action

space A = {steer ∈ [−π, π], throttle ∈ [−1, 1]}
• We could discretize the action space

- what is the disadvantage?

• Can we use A3C?

- How?

• How do we compute argmaxaQ(s, a) in continuous action spaces?

12

Deterministic Policy Gradient

• Extension of policy gradient to deterministic policies µ : S → R|A|

∇θµV (s0) = Es∼d(s)

[
∇aQ(s, µ(s|θµ)|θQ)∇θµµ(s)

]

• It assumes continuous actions. The actor loss is:

La = −Q(s, µ(s|θµ))

• Can be extended to discrete environments using mechanisms that produce

differentiable samples from categorical distribution (e.g. Gumbel-Softmax)

• Train the critic by minimising the TD-error:

Lc =
1

2

(
r + γQtarget(s

′, µtarget(s
′|θµ′)|θQ′

)− Q(s, a|θQ)
)2

13

Deterministic Policy Gradient

• Extension of policy gradient to deterministic policies µ : S → R|A|

∇θµV (s0) = Es∼d(s)

[
∇aQ(s, µ(s|θµ)|θQ)∇θµµ(s)

]
• It assumes continuous actions. The actor loss is:

La = −Q(s, µ(s|θµ))

• Can be extended to discrete environments using mechanisms that produce

differentiable samples from categorical distribution (e.g. Gumbel-Softmax)

• Train the critic by minimising the TD-error:

Lc =
1

2

(
r + γQtarget(s

′, µtarget(s
′|θµ′)|θQ′

)− Q(s, a|θQ)
)2

13

Deterministic Policy Gradient

• Extension of policy gradient to deterministic policies µ : S → R|A|

∇θµV (s0) = Es∼d(s)

[
∇aQ(s, µ(s|θµ)|θQ)∇θµµ(s)

]
• It assumes continuous actions. The actor loss is:

La = −Q(s, µ(s|θµ))

• Can be extended to discrete environments using mechanisms that produce

differentiable samples from categorical distribution (e.g. Gumbel-Softmax)

• Train the critic by minimising the TD-error:

Lc =
1

2

(
r + γQtarget(s

′, µtarget(s
′|θµ′)|θQ′

)− Q(s, a|θQ)
)2

13

Deterministic Policy Gradient

• Extension of policy gradient to deterministic policies µ : S → R|A|

∇θµV (s0) = Es∼d(s)

[
∇aQ(s, µ(s|θµ)|θQ)∇θµµ(s)

]
• It assumes continuous actions. The actor loss is:

La = −Q(s, µ(s|θµ))

• Can be extended to discrete environments using mechanisms that produce

differentiable samples from categorical distribution (e.g. Gumbel-Softmax)

• Train the critic by minimising the TD-error:

Lc =
1

2

(
r + γQtarget(s

′, µtarget(s
′|θµ′)|θQ′

)− Q(s, a|θQ)
)2

13

Deterministic Policy Gradient – Diagram

14

Exploration

• Q-learning uses ε-greedy

• A3C samples from a Softmax distribution and exploration is encouraged through an

entropy-based term in the actor’s loss

• DDPG adds random noise to the output of the actor (e.g. Gaussian noise,

Ornstein–Uhlenbeck noise)

a = µ(s|θµ) +N

15

Deep Deterministic Policy Gradient (DDPG) [Lillicrap et al., 2016]

16

Sample Efficiency of DDPG [Wang et al., 2017]

DDPG converges in 1M steps, A3C requires 150M steps

17

Debugging Deep RL

Debugging Deep RL Algorithms

• Start with simple environments that are quick to train on

• Log everything (Frequently)!
• In particular, keep track of :
• Performance

• Exploration hyperparameters

• Loss function components

• Gradients (Ensure they do not explode)

• Save your logs in a format that can be used for further processing

• Use tools that automatically displays your logs as Figures, e.g. Wandb, Tensorboard

18

Debugging Deep RL Algorithms

• Policy Gradient
• Policy should not get too close to deterministic policies early on

• Track the magnitude of the policy gradient loss and entropy loss

• Q-Learning based methods
• Track learning rate schedules

• Track exploration schedule

• Check magnitude of the gradients

• Visualize the policies during evaluation

19

Reading (Optional)

• Volodymyr, Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy

Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. ”Asynchronous methods

for deep reinforcement learning.” In International Conference on Machine Learning, pp.

1928-1937, 2016

• John, Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.

”High-dimensional continuous control using generalized advantage estimation.” arXiv

preprint arXiv:1506.02438 (2015)

• Timothy P., Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. ”Continuous control with deep

reinforcement learning.” arXiv preprint arXiv:1509.02971 (2015)

20

Going Forward ...

• ∼ 3 weeks left for the coursework

• Labs this week (W7) and next week (W8)
• Come with questions prepared!

• If you are unfamiliar with PyTorch, check out the provided notebook from the labs

and further documentation and tutorials on https://pytorch.org

21

https://pytorch.org

Any Questions?

21

	Recap: DQN
	Asynchronous Training
	Deep Actor-Critic
	Deep Deterministic Policy Gradient
	Debugging Deep RL

