Reinforcement Learning

Deep Reinforcement Learning II

Trevor McInroe

5 March 2024

- Problems with experience replay
- Asynchronous methods for deep RL
- Deep actor-critic methods
- Deep deterministic policy gradient
- Debugging deep RL

Recap: DQN

Recap: Deep Q-Network (DQN)

Deep Q-Network:

- Approximate state-action values using a neural network
- Stabilise training by:
 - Sampling batches from experience replay buffer
 - Using separate network to compute target values
- Further optimisation by:
 - Double DQN to reduce overestimation of Q-values
 - Prioritised replay to increase likelihood of sampling valuable experience

- Requires large storage for replay buffer (e.g. Atari game requires ≈56GB of RAM)
- Use of replay buffer requires off-policy method (why?)
- Not straightforward handling of multi-step returns (why?)

- Requires large storage for replay buffer (e.g. Atari game requires ≈56GB of RAM)
- Use of replay buffer requires off-policy method (why?)
- Not straightforward handling of multi-step returns (why?)

Is there an alternative approach to break correlations of consecutive experience?

Asynchronous Training

• Create *n* parallel "worker" threads with own environment copies and shared global network

- Create *n* parallel "worker" threads with own environment copies and shared global network
- Each worker interacts independently with its environment

- Create *n* parallel "worker" threads with own environment copies and shared global network
- Each worker interacts independently with its environment
- Asynchronous updates:

Periodically, each worker updates the global network parameters based on its local experiences

• Asynchronous updating is another way of breaking correlation in samples \Rightarrow Means we don't need replay buffer!

- Asynchronous updating is another way of breaking correlation in samples
 ⇒ Means we don't need replay buffer!
- Better handling of sequential data: can use on-policy and multi-step returns

- Asynchronous updating is another way of breaking correlation in samples
 ⇒ Means we don't need replay buffer!
- Better handling of sequential data: can use on-policy and multi-step returns
- Runs on normal multi-threaded CPUs

- Asynchronous updating is another way of breaking correlation in samples
 ⇒ Means we don't need replay buffer!
- Better handling of sequential data: can use on-policy and multi-step returns
- Runs on normal multi-threaded CPUs
- Alternative: parallel, vectorised environments

Asynchronous 1-Step Q-Learning [Mnih et al., 2016]

repeat

 θ for value network

 θ^- for target network

 θ/θ^- are global shared between workers

Take action a with ϵ -greedy policy based on $Q(s, a; \theta)$ Receive new state s' and reward r $y = \begin{cases} r & \text{for terminal } s' \\ r + \gamma \max_{a'} Q(s', a'; \theta^{-}) & \text{for non-terminal } s' \end{cases}$ Accumulate gradients wrt θ : $d\theta \leftarrow d\theta + \frac{\partial (y - Q(s,a;\theta))^2}{\partial \theta}$ s = s' $T \leftarrow T + 1$ and $t \leftarrow t + 1$ if $T \mod I_{target} == 0$ then Update the target network $\theta^- \leftarrow \theta$ end if if $t \mod I_{AsyncUpdate} == 0$ or s is terminal then Perform asynchronous update of θ using $d\theta$. Clear gradients $d\theta \leftarrow 0$. end if until $T > T_{max}$

More workers (parallel threads) lead to faster learning

More workers (parallel threads) lead to faster learning

- Workers explore different parts of the environment
- Workers can use different exploration policies (e.g. *ϵ*-values)

Deep Actor-Critic

Recap: Actor-Critic Algorithm

Objective: Find parameters heta maximising $J = V^{\pi_{ heta}}(s)$

Recap: Actor-Critic Algorithm

Objective: Find parameters θ maximising $J = V^{\pi_{\theta}}(s)$

• Estimate gradient $\nabla_{\theta} J$ using the **policy gradient theorem**:

$$abla_{ heta} J = \mathbb{E}_{(s,a,r,s') \sim \mathcal{B}}[R_s \,
abla_{ heta} \log \pi_{ heta}(a|s)]$$

Objective: Find parameters θ maximising $J = V^{\pi_{\theta}}(s)$

• Estimate gradient $\nabla_{\theta} J$ using the **policy gradient theorem**:

$$\nabla_{\theta} J = \mathbb{E}_{(s,a,r,s') \sim \mathcal{B}}[R_s \nabla_{\theta} \log \pi_{\theta}(a|s)]$$

• Approximate R_s , the return at state s, with a critic \hat{V}_w with parameters w

$$abla_ heta J = \mathbb{E}_{(s,a,r,s')\sim\mathcal{B}}\Big[(r+\hat{V}_w(s'))
abla_ heta\log\pi_ heta(a|s)\Big]$$

Train the critic by minimising the TD-error $L(w) = \mathbb{E}_{s \sim B} \Big[(R_s - \hat{V}_w(s))^2 \Big]$

Objective: Find parameters θ maximising $J = V^{\pi_{\theta}}(s)$

• Estimate gradient $\nabla_{\theta} J$ using the **policy gradient theorem**:

$$\nabla_{\theta} J = \mathbb{E}_{(s,a,r,s') \sim \mathcal{B}}[R_s \nabla_{\theta} \log \pi_{\theta}(a|s)]$$

• Approximate R_s , the return at state s, with a critic \hat{V}_w with parameters w

$$\nabla_{\theta} J = \mathbb{E}_{(s,a,r,s')\sim\mathcal{B}} \Big[(r + \hat{V}_{w}(s')) \nabla_{\theta} \log \pi_{\theta}(a|s) \Big]$$

Train the critic by minimising the TD-error $L(w) = \mathbb{E}_{s \sim \mathcal{B}} \Big[(R_s - \hat{V}_w(s))^2 \Big]$

• Subtract a baseline function in order to reduce the variance of the estimation

$$abla_{ heta} J = \mathbb{E}_{(s,a,r,s')\sim\mathcal{B}} \Big[(r + \hat{V}_w(s') - \hat{V}_w(s))
abla_{ heta} \log \pi_{ heta}(a|s) \Big]$$

Asynchronous Advantage Actor-Critic (A3C) [Mnih et al., 2016]

repeat

Reset gradients: $d\theta \leftarrow 0$ and $d\theta_v \leftarrow 0$. Synchronize thread-specific parameters $\theta' = \theta$ and $\theta'_{\alpha} = \theta_{\alpha}$ $t_{start} = t$ Get state s_t repeat Perform a_t according to policy $\pi(a_t|s_t; \theta')$ Receive reward r_t and new state s_{t+1} $t \leftarrow t + 1$ $T \leftarrow T + 1$ **until** terminal s_t or $t - t_{start} == t_{max}$ $R = \begin{cases} 0 & \text{for terminal } s_t \\ V(s_t, \theta'_v) & \text{for non-terminal } s_t // \text{Bootstrap from last state} \end{cases}$ for $i \in \{t-1,\ldots,t_{start}\}$ do $R \leftarrow r_i + \gamma R$ Accumulate gradients wrt θ' : $d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i | s_i; \theta') (R - V(s_i; \theta'_i))$ Accumulate gradients wrt θ'_{u} : $d\theta_{u} \leftarrow d\theta_{u} + \partial \left(R - V(s_{i};\theta'_{u})\right)^{2}/\partial\theta'_{u}$ end for Perform asynchronous update of θ using $d\theta$ and of θ_v using $d\theta_v$. until $T > T_{max}$

Entropy Regularisation

• Entropy of a stochastic policy

$$H[\pi(a|s)] = \mathbb{E}_{a \sim \pi(a|s)}[-\log \pi(a|s)] = -\sum_{a} \pi(a|s)\log \pi(a|s)$$

The entropy is maximised when the policy distribution is uniform

Entropy Regularisation

• Entropy of a stochastic policy

$$H[\pi(a|s)] = \mathbb{E}_{a \sim \pi(a|s)}[-\log \pi(a|s)] = -\sum_{a} \pi(a|s)\log \pi(a|s)$$

The entropy is maximised when the policy distribution is uniform

• Add an entropy regularisation in A3C

$$L_{actor} = -(R - V(s)) \log \pi(a|s) - \beta H[\pi(a|s)]$$

Encourage exploration by maximising entropy while minimising policy loss

Results of Asynchronous Methods [Mnih et al., 2016]

• For example, consider a domain in which we control an autonomous car with action space $A = \{\text{steer} \in [-\pi, \pi], \text{throttle} \in [-1, 1]\}$

- For example, consider a domain in which we control an autonomous car with action space $A = \{\text{steer} \in [-\pi, \pi], \text{throttle} \in [-1, 1]\}$
- We could discretize the action space
 - what is the disadvantage?

- For example, consider a domain in which we control an autonomous car with action space $A = \{\text{steer} \in [-\pi, \pi], \text{throttle} \in [-1, 1]\}$
- We could discretize the action space
 - what is the disadvantage?
- Can we use A3C?
 - How?

- For example, consider a domain in which we control an autonomous car with action space $A = \{\text{steer} \in [-\pi, \pi], \text{throttle} \in [-1, 1]\}$
- We could discretize the action space
 - what is the disadvantage?
- Can we use A3C?
 - How?
- How do we compute $argmax_aQ(s, a)$ in continuous action spaces?

• Extension of policy gradient to *deterministic* policies $\mu: S \to \mathbb{R}^{|A|}$

$$\nabla_{\theta^{\mu}} V(s_0) = \mathbb{E}_{s \sim d(s)} \Big[\nabla_{a} Q(s, \mu(s | \theta^{\mu}) | \theta^{Q}) \nabla_{\theta^{\mu}} \mu(s) \Big]$$

• Extension of policy gradient to *deterministic* policies $\mu: S \to \mathbb{R}^{|A|}$

$$\nabla_{\theta^{\mu}} V(s_0) = \mathbb{E}_{s \sim d(s)} \Big[\nabla_a Q(s, \mu(s|\theta^{\mu})|\theta^Q) \nabla_{\theta^{\mu}} \mu(s) \Big]$$

• It assumes continuous actions. The actor loss is:

$$L_a = -Q(s, \mu(s| heta^\mu))$$

• Extension of policy gradient to *deterministic* policies $\mu: S \to \mathbb{R}^{|A|}$

$$\nabla_{\theta^{\mu}} V(s_0) = \mathbb{E}_{s \sim d(s)} \Big[\nabla_a Q(s, \mu(s|\theta^{\mu})|\theta^Q) \nabla_{\theta^{\mu}} \mu(s) \Big]$$

• It assumes continuous actions. The actor loss is:

$$L_a = -Q(s, \mu(s| heta^\mu))$$

• Can be extended to discrete environments using mechanisms that produce differentiable samples from categorical distribution (e.g. *Gumbel-Softmax*)

• Extension of policy gradient to *deterministic* policies $\mu: S \to \mathbb{R}^{|A|}$

$$abla_{ heta^{\mu}}V(s_0) = \mathbb{E}_{s\sim d(s)}\Big[
abla_a Q(s,\mu(s| heta^{\mu})| heta^Q)
abla_{ heta^{\mu}}\mu(s)\Big]$$

• It assumes continuous actions. The actor loss is:

$$L_a = -Q(s, \mu(s| heta^\mu))$$

- Can be extended to discrete environments using mechanisms that produce differentiable samples from categorical distribution (e.g. *Gumbel-Softmax*)
- Train the critic by minimising the TD-error:

$$L_{c} = \frac{1}{2} \Big(r + \gamma Q_{target}(s', \mu_{target}(s'|\theta^{\mu'})|\theta^{Q'}) - Q(s, a|\theta^{Q}) \Big)^{2}$$

Deterministic Policy Gradient – Diagram

- Q-learning uses ϵ -greedy
- A3C samples from a Softmax distribution and exploration is encouraged through an entropy-based term in the actor's loss
- DDPG adds random noise to the output of the actor (e.g. Gaussian noise, Ornstein–Uhlenbeck noise)

$$m{a}=\mu(m{s}| heta^{\mu})+\mathcal{N}$$

for episode = 1, M do Initialize a random process \mathcal{N} for action exploration Receive initial observation state s_1 for t = 1, T do Select action $a_t = \mu(s_t | \theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise Execute action a_t and observe reward r_t and observe new state s_{t+1} Store transition (s_t, a_t, r_t, s_{t+1}) in RSample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from RSet $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1} | \theta^{\mu'}) | \theta^{Q'})$ Update critic by minimizing the loss: $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i | \theta^Q))^2$ Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\begin{aligned} \theta^{Q'} &\leftarrow \tau \theta^Q + (1 - \tau) \theta^{Q'} \\ \theta^{\mu'} &\leftarrow \tau \theta^\mu + (1 - \tau) \theta^{\mu'} \end{aligned}$$

Sample Efficiency of DDPG [Wang et al., 2017]

DDPG converges in 1M steps, A3C requires 150M steps

Debugging Deep RL

Debugging Deep RL Algorithms

- Start with simple environments that are quick to train on
- Log everything (Frequently)!
 - In particular, keep track of :
 - Performance
 - Exploration hyperparameters
 - Loss function components
 - Gradients (Ensure they do not explode)
 - Save your logs in a format that can be used for further processing
 - Use tools that automatically displays your logs as Figures, e.g. Wandb, Tensorboard

Debugging Deep RL Algorithms

- Policy Gradient
 - Policy should not get too close to deterministic policies early on
 - Track the magnitude of the policy gradient loss and entropy loss
- Q-Learning based methods
 - Track learning rate schedules
 - Track exploration schedule
 - Check magnitude of the gradients
- Visualize the policies during evaluation

- Volodymyr, Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. "Asynchronous methods for deep reinforcement learning." In International Conference on Machine Learning, pp. 1928-1937, 2016
- John, Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. "High-dimensional continuous control using generalized advantage estimation." arXiv preprint arXiv:1506.02438 (2015)
- Timothy P., Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015)

- \sim 3 weeks left for the coursework
- Labs this week (W7) and next week (W8)
 - Come with questions prepared!
 - If you are unfamiliar with PyTorch, check out the provided notebook from the labs and further documentation and tutorials on https://pytorch.org

Any Questions?