Lecture Outline

• Problems with experience replay
• Asynchronous methods for deep RL
• Deep actor-critic methods
• Deep deterministic policy gradient
• Debugging deep RL
Recap: DQN
Recap: Deep Q-Network (DQN)

Deep Q-Network:

- Approximate state-action values using a neural network
- Stabilise training by:
 - Sampling batches from experience replay buffer
 - Using separate network to compute target values
- Further optimisation by:
 - Double DQN to reduce overestimation of Q-values
 - Prioritised replay to increase likelihood of sampling valuable experience
Problems of Experience Replay Buffer

- Requires large storage for replay buffer (e.g. Atari game requires \(\approx 56GB \) of RAM)
- Use of replay buffer requires off-policy method (why?)
- Not straightforward handling of multi-step returns (why?)
Problems of Experience Replay Buffer

- Requires large storage for replay buffer (e.g. Atari game requires ≈ 56GB of RAM)
- Use of replay buffer requires off-policy method (why?)
- Not straightforward handling of multi-step returns (why?)

Is there an alternative approach to break correlations of consecutive experience?
Asynchronous Training
Asynchronous Framework

Create n parallel "worker" threads with own environment copies and shared global network

Each worker interacts independently with its environment

Asynchronous updates:
Periodically, each worker updates the global network parameters based on its local experiences
Asynchronous Framework

- Create \(n \) parallel “worker” threads with own environment copies and shared global network
Asynchronous Framework

- Create n parallel “worker” threads with own environment copies and shared global network
- Each worker interacts independently with its environment
Asynchronous Framework

- Create n parallel “worker” threads with own environment copies and shared global network
- Each worker interacts independently with its environment
- **Asynchronous updates:** Periodically, each worker updates the global network parameters based on its local experiences
• Asynchronous updating is another way of breaking correlation in samples
 ⇒ Means we don’t need replay buffer!
Benefits of Asynchronous Framework

- Asynchronous updating is another way of breaking correlation in samples
 ⇒ Means we don’t need replay buffer!

- Better handling of sequential data: can use on-policy and multi-step returns
Benefits of Asynchronous Framework

• Asynchronous updating is another way of breaking correlation in samples
 ⇒ Means we don’t need replay buffer!

• Better handling of sequential data: can use on-policy and multi-step returns

• Runs on normal multi-threaded CPUs
Benefits of Asynchronous Framework

- Asynchronous updating is another way of breaking correlation in samples
 ⇒ Means we don’t need replay buffer!
- Better handling of sequential data: can use on-policy and multi-step returns
- Runs on normal multi-threaded CPUs
- Alternative: parallel, vectorised environments
Asynchronous 1-Step Q-Learning [Mnih et al., 2016]

repeat
 Take action \(a \) with \(\epsilon \)-greedy policy based on \(Q(s, a; \theta) \)
 Receive new state \(s' \) and reward \(r \)
 \[
 y = \begin{cases}
 r & \text{for terminal } s' \\
 r + \gamma \max_{a'} Q(s', a'; \theta^-) & \text{for non-terminal } s'
 \end{cases}
 \]

 Accumulate gradients wrt \(\theta \): \(d\theta \leftarrow d\theta + \frac{\partial(y - Q(s,a;\theta))^2}{\partial \theta} \)

 \(s = s' \)
 \(T \leftarrow T + 1 \) and \(t \leftarrow t + 1 \)

 if \(T \mod I_{\text{target}} == 0 \) then
 Update the target network \(\theta^- \leftarrow \theta \)
 end if

 if \(t \mod I_{\text{AsyncUpdate}} == 0 \) or \(s \) is terminal then
 Perform asynchronous update of \(\theta \) using \(d\theta \).
 Clear gradients \(d\theta \leftarrow 0 \).
 end if

until \(T > T_{\text{max}} \)
More workers (parallel threads) lead to faster learning
More workers (parallel threads) lead to faster learning

- Workers explore different parts of the environment
- Workers can use different exploration policies (e.g. ϵ-values)
Deep Actor-Critic
Recap: Actor-Critic Algorithm

Objective: Find parameters θ maximising $J = V^{\pi_\theta}(s)$
Recap: Actor-Critic Algorithm

Objective: Find parameters θ maximising $J = V^{\pi_\theta}(s)$

- Estimate gradient $\nabla_\theta J$ using the **policy gradient theorem**:

$$
\nabla_\theta J = \mathbb{E}_{(s,a,r,s') \sim B}[R_s \nabla_\theta \log \pi_\theta(a|s)]
$$
Recap: Actor-Critic Algorithm

Objective: Find parameters θ maximising $J = V^{\pi_\theta}(s)$

- Estimate gradient $\nabla \theta J$ using the **policy gradient theorem**:

 $$\nabla \theta J = \mathbb{E}_{(s,a,r,s') \sim B}[R_s \nabla \theta \log \pi_\theta(a|s)]$$

- Approximate R_s, the return at state s, with a critic \hat{V}_w with parameters w

 $$\nabla \theta J = \mathbb{E}_{(s,a,r,s') \sim B}[(r + \hat{V}_w(s'))\nabla \theta \log \pi_\theta(a|s)]$$

Train the critic by minimising the TD-error $L(w) = \mathbb{E}_{s \sim B}[(R_s - \hat{V}_w(s))^2]$
Recap: Actor-Critic Algorithm

Objective: Find parameters θ maximising $J = V^{\pi_{\theta}}(s)$

- Estimate gradient $\nabla_{\theta} J$ using the **policy gradient theorem**:
 \[
 \nabla_{\theta} J = \mathbb{E}_{(s,a,r,s') \sim B}[R_s \nabla_{\theta} \log \pi_{\theta}(a|s)]
 \]

- Approximate R_s, the return at state s, with a critic \hat{V}_w with parameters w
 \[
 \nabla_{\theta} J = \mathbb{E}_{(s,a,r,s') \sim B}[(r + \hat{V}_w(s'))\nabla_{\theta} \log \pi_{\theta}(a|s)]
 \]

 Train the critic by minimising the TD-error $L(w) = \mathbb{E}_{s \sim B}[(R_s - \hat{V}_w(s))^2]$

- Subtract a baseline function in order to reduce the variance of the estimation
 \[
 \nabla_{\theta} J = \mathbb{E}_{(s,a,r,s') \sim B}[(r + \hat{V}_w(s') - \hat{V}_w(s))\nabla_{\theta} \log \pi_{\theta}(a|s)]
 \]
Asynchronous Advantage Actor-Critic (A3C) [Mnih et al., 2016]

repeat
 Reset gradients: $d\theta \leftarrow 0$ and $d\theta_v \leftarrow 0$.
 Synchronize thread-specific parameters $\theta' = \theta$ and $\theta'_v = \theta_v$.
 $t_{\text{start}} = t$
 Get state s_t
 repeat
 Perform a_t according to policy $\pi(a_t|s_t; \theta')$
 Receive reward r_t and new state s_{t+1}
 $t \leftarrow t + 1$
 $T \leftarrow T + 1$
 until terminal s_t or $t - t_{\text{start}} =: t_{\text{max}}$

$R = \begin{cases}
0 & \text{for terminal } s_t \\
V(s_t, \theta'_v) & \text{for non-terminal } s_t
\end{cases}$

for $i \in \{t - 1, \ldots, t_{\text{start}}\}$ do
 $R \leftarrow r_i + \gamma R$
 Accumulate gradients wrt θ': $d\theta \leftarrow d\theta + \nabla_{\theta'} \log \pi(a_i|s_i; \theta') (R - V(s_i; \theta'_v))$
 Accumulate gradients wrt θ'_v: $d\theta_v \leftarrow d\theta_v + \partial (R - V(s_i; \theta'_v))^2 / \partial \theta'_v$
end for

Perform asynchronous update of θ using $d\theta$ and of θ_v using $d\theta_v$.

until $T > T_{\text{max}}$
Entropy Regularisation

- **Entropy** of a stochastic policy

\[
H[\pi(a|s)] = \mathbb{E}_{a \sim \pi(a|s)}[-\log \pi(a|s)] = -\sum_a \pi(a|s) \log \pi(a|s)
\]

The entropy is maximised when the policy distribution is uniform.
Entropy Regularisation

- **Entropy** of a stochastic policy

\[H[\pi(a|s)] = \mathbb{E}_{a \sim \pi(a|s)}[-\log \pi(a|s)] = -\sum_a \pi(a|s) \log \pi(a|s) \]

The entropy is maximised when the policy distribution is uniform

- Add an entropy regularisation in A3C

\[L_{actor} = -(R - V(s)) \log \pi(a|s) - \beta H[\pi(a|s)] \]

Encourage exploration by maximising entropy while minimising policy loss
Results of Asynchronous Methods [Mnih et al., 2016]

Beamrider

Score vs. Training time (hours)

Breakout

Score vs. Training time (hours)

Pong

Score vs. Training time (hours)
Deep Deterministic Policy Gradient
For example, consider a domain in which we control an autonomous car with action space $A = \{\text{steer} \in [-\pi, \pi], \text{throttle} \in [-1, 1]\}$.
For example, consider a domain in which we control an autonomous car with action space $A = \{\text{steer} \in [-\pi, \pi], \text{throttle} \in [-1, 1]\}$

We could discretize the action space
- *what is the disadvantage?*
For example, consider a domain in which we control an autonomous car with action space
\[A = \{ \text{steer} \in [-\pi, \pi], \text{throttle} \in [-1, 1] \} \]

We could discretize the action space
- what is the disadvantage?

Can we use A3C?
- How?
For example, consider a domain in which we control an autonomous car with action space $A = \{\text{steer} \in [-\pi, \pi], \text{throttle} \in [-1, 1]\}$

We could discretize the action space
- what is the disadvantage?

Can we use A3C?
- How?

How do we compute $\arg\max_a Q(s, a)$ in continuous action spaces?
Deterministic Policy Gradient

- Extension of policy gradient to \textit{deterministic} policies $\mu : S \rightarrow \mathbb{R}^{|A|}$

$$\nabla_{\theta \mu} V(s_0) = \mathbb{E}_{s \sim d(s)} \left[\nabla_a Q(s, \mu(s|\theta^\mu) | \theta^Q) \nabla_{\theta \mu} \mu(s) \right]$$
Deterministic Policy Gradient

- Extension of policy gradient to *deterministic* policies $\mu : S \rightarrow \mathbb{R}^{|A|}$

$$\nabla_{\theta \mu} V(s_0) = \mathbb{E}_{s \sim d(s)} \left[\nabla_a Q(s, \mu(s|\theta^\mu)|\theta^Q) \nabla_{\theta \mu} \mu(s) \right]$$

- It assumes continuous actions. The actor loss is:

$$L_a = -Q(s, \mu(s|\theta^\mu))$$
Deterministic Policy Gradient

- Extension of policy gradient to *deterministic* policies $\mu : S \rightarrow \mathbb{R}^{|A|}$

$$\nabla_{\theta} V(s_0) = \mathbb{E}_{s \sim d(s)} \left[\nabla_a Q(s, \mu(s|\theta^\mu)|\theta^Q) \nabla_{\theta^\mu} \mu(s) \right]$$

- It assumes continuous actions. The actor loss is:

$$L_a = -Q(s, \mu(s|\theta^\mu))$$

- Can be extended to discrete environments using mechanisms that produce differentiable samples from categorical distribution (e.g. *Gumbel-Softmax*)
Deterministic Policy Gradient

- Extension of policy gradient to *deterministic* policies $\mu : S \rightarrow \mathbb{R}^{|A|}$

$$\nabla_{\theta \mu} V(s_0) = \mathbb{E}_{s \sim d(s)} \left[\nabla_a Q(s, \mu(s|\theta \mu)|\theta Q) \nabla_{\theta \mu} \mu(s) \right]$$

- It assumes continuous actions. The actor loss is:

$$L_a = -Q(s, \mu(s|\theta \mu))$$

- Can be extended to discrete environments using mechanisms that produce differentiable samples from categorical distribution (e.g. Gumbel-Softmax)

- Train the critic by minimising the TD-error:

$$L_c = \frac{1}{2} \left(r + \gamma Q_{\text{target}}(s', \mu_{\text{target}}(s'|\theta \mu')|\theta Q') - Q(s, a|\theta Q) \right)^2$$
Deterministic Policy Gradient – Diagram
• Q-learning uses ϵ-greedy

• A3C samples from a Softmax distribution and exploration is encouraged through an entropy-based term in the actor’s loss

• DDPG adds random noise to the output of the actor (e.g. Gaussian noise, Ornstein–Uhlenbeck noise)

\[a = \mu(s|\theta^\mu) + \mathcal{N} \]
for episode = 1, M do
 Initialize a random process \(\mathcal{N} \) for action exploration
 Receive initial observation state \(s_1 \)
 for \(t = 1, T \) do
 Select action \(a_t = \mu(s_t|\theta^\mu) + \mathcal{N}_t \) according to the current policy and exploration noise
 Execute action \(a_t \) and observe reward \(r_t \) and observe new state \(s_{t+1} \)
 Store transition \((s_t, a_t, r_t, s_{t+1}) \) in \(R \)
 Sample a random minibatch of \(N \) transitions \((s_i, a_i, r_i, s_{i+1}) \) from \(R \)
 Set \(y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'}))|\theta^{Q'} \)
 Update critic by minimizing the loss: \(L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^Q))^2 \)
 Update the actor policy using the sampled policy gradient:
 \[
 \nabla_{\theta^\mu} J \approx \frac{1}{N} \sum_i \nabla_a Q(s, a|\theta^Q)|_{s = s_i, a = \mu(s_i)} \nabla_{\theta^\mu} \mu(s|\theta^\mu)|_{s = s_i}
 \]
 Update the target networks:
 \[
 \theta^{Q'} \leftarrow \tau \theta^Q + (1 - \tau) \theta^{Q'} \\
 \theta^{\mu'} \leftarrow \tau \theta^\mu + (1 - \tau) \theta^{\mu'}
 \]
Sample Efficiency of DDPG [Wang et al., 2017]

DDPG converges in 1M steps, A3C requires 150M steps
Debugging Deep RL
Debugging Deep RL Algorithms

• Start with simple environments that are quick to train on
• Log everything (Frequently)!
 • In particular, keep track of:
 • Performance
 • Exploration hyperparameters
 • Loss function components
 • Gradients (Ensure they do not explode)
• Save your logs in a format that can be used for further processing
• Use tools that automatically displays your logs as Figures, e.g. Wandb, Tensorboard
Debugging Deep RL Algorithms

• Policy Gradient
 • Policy should not get too close to deterministic policies early on
 • Track the magnitude of the policy gradient loss and entropy loss

• Q-Learning based methods
 • Track learning rate schedules
 • Track exploration schedule
 • Check magnitude of the gradients

• Visualize the policies during evaluation

Going Forward ...

- ~ 3 weeks left for the coursework
- Labs this week (W7) and next week (W8)
 - Come with questions prepared!
- If you are unfamiliar with PyTorch, check out the provided notebook from the labs and further documentation and tutorials on https://pytorch.org
Any Questions?