
Reinforcement Learning
Multi-Agent Reinforcement Learning II

Stefano V. Albrecht, Michael Herrmann
12 March 2024



Lecture Outline

• Independent learning
• Joint action learning
• Game-theoretic RL
• Opponent modelling RL
• Learning in mixed groups
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Recap: Multi-Agent Systems

• Multiple agents interact in shared
environment

• Each agent with own observations,
actions, goals, ...

• Agents must coordinate actions to
achieve their goals
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Multi-Agent Learning

Last time we discussed:

• Models of multi-agent interaction
⇒ Repeated games, Stochastic games

• Solution concepts for games
⇒ For common rewards: maximise expected return (like MDP)
⇒ Zero-sum/general rewards: minimax, Nash equilibrium, Pareto, welfare, ...

Now: multi-agent learning

• Can agents learn to solve game through repeated interactions?
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Independent Learning

Basic approach: independent learning (IL)

• Each agent uses a single-agent RL algorithm (e.g. Q-learning)
• Treat game like MDP, agents do not model other agents

IL can be successful:

• TD-Gammon used IL,
beat Backgammon champion

• AlphaGo used IL,
beat Go champion
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Independent Learning

Independent Q-Learning (we control agent i):
1: Initialise: Qi(s,ai) = 0 for all s ∈ S,ai ∈ Ai
2: repeat:
3: Observe current state s
4: With probability ϵ: choose random action ai
5: Else: choose greedy action ai ∈ argmaxai Qi(s,ai)
6: Observe own reward ri and next state s′

7: Qi(s,ai)← Qi(s,ai) + α
[
ri + γmaxa′i Qi(s

′,a′i)− Qi(s,a)
]
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Independent Learning

Problem with IL: high variance in updates

• Independent Q-learners: each agent i maintains Q-table Qi(s,ai)
• After reward ri = ui(s,a1, ...,an), update Qi(s,ai) toward ri + γmaxa′i Qi(s

′,a′i)

Repeated RPS:
• If (a1,a2) = (R, S), then r1 = +1
• If (a1,a2) = (R,P), then r1 = −1

⇒ Agent 1 cannot tell when reward is +1/−1 !
(unless we add actions to state; why?)

R P S
R 0,0 -1,1 1,-1
P 1,-1 0,0 -1,1
S -1,1 1,-1 0,0
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Joint Action Learning

Reduce variance by learning values for joint actions: Qi(s,a1, ...,an)

• Now can differentiate between +1/−1 rewards
• Space requirement is exponential in agents, O(|A1 × · · · × An|)
• Use function approximation to compress and generalise

But: Qi(s,a1, ...,an) alone is no longer enough to find best action for i

• How to evaluate maxai Qi(s,a1, ...,an) ?
⇒ Best action depends on actions of other agents!

How to select action from Qi? How to update Qi?

7



Joint Action Learning

Reduce variance by learning values for joint actions: Qi(s,a1, ...,an)

• Now can differentiate between +1/−1 rewards
• Space requirement is exponential in agents, O(|A1 × · · · × An|)
• Use function approximation to compress and generalise

But: Qi(s,a1, ...,an) alone is no longer enough to find best action for i

• How to evaluate maxai Qi(s,a1, ...,an) ?
⇒ Best action depends on actions of other agents!

How to select action from Qi? How to update Qi?

7



Game-Theoretic Reinforcement Learning

Joint action Q-tables define normal-form game:

• Agent i stores a Q-table Qj for every agent j ∈ N
(assumes agent can observe all agents’ actions and rewards)

• Reward functions for normal-form game in state s are
uj(a1, ...,an) = Qj(s,a1, ...,an)

We can solve the normal-form game defined by

Γs
.
=

(
u1 = Q1(s), · · · ,un = Qn(s)

)
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Game-Theoretic Reinforcement Learning

Solution of Γs is a policy profile (π1, ..., πn) with certain properties (e.g. NE)
⇒ Use πi to select action for agent i

Value of Γs to agent j is expected reward under solution (π1, ..., πn)

Valj(Γs) =
∑
a∈ A

uj(a)
∏
k∈N

πk(ak)

Now:
⇒ Update Qj towards target: rj + γ Valj(Γs′)
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Joint Action Learning with Game Theory

JAL-GT (we control agent i):
1: Initialise: Qj(s,a) = 0 for all j ∈ N and s ∈ S,a ∈ A
2: repeat:
3: Observe current state s
4: With probability ϵ: choose random action ai
5: Else: solve Γs to get policies (π1, ..., πn), then sample action ai ∼ πi(s)
6: Observe joint action a = (a1, ...,an), rewards rj for all j, and next state s′

7: for each j do
8: Qj(s,a)← Qj(s,a) + α

[
rj + γ Valj(Γs′)− Qj(s,a)

]
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Minimax-Q, Nash-Q, CE-Q

Minimax-Q uses minimax solution (Littman, 1994)

• Converges to unique value in two-player zero-sum games
⇒ Any such game has unique minimax value

• Minimax profile can be computed with linear programming (LP)

Nash-Q uses Nash equilibrium (Hu and Wellman, 2003)
CE-Q uses correlated equilibrium (Greenwald and Hall, 2003)

• Converges to equilibrium under highly restrictive conditions
⇒ Problem: often no unique equilibrium value in general-reward games

• Compute CE with LP, compute NE with quadratic programming
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Example: Minimax-Q in Grid Soccer (Littman, 1994)

• Episodes start in left state with random ball assignment
• Agent wins episode if it moves the ball into opponent goal
• Agent loses ball to opponent if it moves into opponent’s location

Against unknown opponent, optimal policy must randomise (right state; why?)
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Example: Minimax-Q in Grid Soccer (Littman, 1994)

• MR: minimax-Q trained against random opponent
• MM: minimax-Q trained against minimax-Q
• QR: Q-learning trained against random opponent
• QQ: Q-learning trained against Q-learning (IL)
• “X-challenger” is optimal policy against final policy learned by X
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Example: Minimax-Q in Grid Soccer (Littman, 1994)

• Minimax-Q learns “safe” policy that works against any opponent
⇒ Minimax policy guarantees minimum average 50% win

• Lower % win against challenger because MR/MM did not fully converge during training, so
could be exploited by optimal challenger
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Example: Minimax-Q in Grid Soccer (Littman, 1994)

• Q-learning optimises against specific opponent, can learn strong performance

• Problem: overfits to opponent, does not generalise well to other opponents
⇒ Challenger exploits deterministic Q-learning policies
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Opponent Modelling & Best Response

Game theory solutions are normative: they prescribe how agents should behave

• E.g. minimax assumes worst-case opponent
• E.g. NE assumes agents are perfect rational optimisers
⇒ What if agents don’t behave as prescribed by solution?

Other approach: opponent modelling with best response

• Learn models of other agents to predict their actions
• Compute optimal action (best response) against agent models
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Opponent Modelling

Many kinds of opponent modelling:

• Policy reconstruction
• Type-based reasoning
• Classification
• Plan recognition

• Recursive reasoning
• Graphical methods
• Group modelling
• Implicit modelling
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Policy Reconstruction

Policy reconstruction: learn model π̂j ≈ πj from observations

Conditional action frequency:

π̂j(s,aj) ∝
∑
t: st=s

[atj = aj]1

In general, can train model with supervised learning on pairs (st,atj)

• E.g. decision tree, neural network, finite state machine, ...
• Model should support incremental updating
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Best Response

Expected value of action ai in state s against models π̂j is

EV(s,ai) =
∑
a−i

Q(s,ai,a−i)
∏
j ̸= i

π̂j(s,aj)

a−i is action tuple for all agents except i

Best response is action with maximum expected value: argmaxai EV(s,ai)

Use EV(s,ai) in place of Q-table for action selection and update targets
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Joint Action Learning with Opponent Modelling

JAL-OM (we control agent i):
1: Initialise: Qi(s,a) = 0 for all s ∈ S,a ∈ A; models π̂j(s, ·) = 1

|Aj|
for j ̸= i

2: repeat:
3: Observe current state s
4: With probability ϵ: choose random action ai
5: Else: choose best-response action argmaxai EV(s,ai)
6: Observe joint action a = (a1, ...,an), own reward ri, and next state s′

7: for each j do
8: Update model π̂j with new observations
9: Qi(s,a)← Qi(s,a) + α

[
ri + γmaxa′i EV(s

′,a′i)− Qi(s,a)
]
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Example: Multi-Pacman

Pacmans must catch the ghost

• Actions: move up, down, left, right

• States: (P1,P2,G) = locations (red dot)
of pacmans and ghost

• Ghost moves randomly

• Reward to both pacmans:
+1 if ghost is caught, else 0 (γ = 0.8)
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Example: Multi-Pacman – 10x10 Grid, 2 Agents, 1 Ghost

Video: learned JAL policies 22



Example: Level-Based Foraging

Robots must collect items in minimal time
• Actions:
– move up, down, left, right
– try to load item

• Robots can load item if positioned next
to item and sum of robots’ levels ≥
item level

• Reward to robot i:
– +1 if involved in successful loading
– −1 if trying to move outside grid
– 0 otherwise
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Example: Level-Based Foraging – 5x5 Grid, 2 Agents, 1 Item

JAL-OM
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Learning in Mixed Groups

Standard mode of operation is self-play: all agents use same algorithm

Bonus question: how do algorithms perform in mixed groups?

Tested 5 algorithms in mixed learning groups:

• Nash-Q: game-theoretic RL
• JAL and CJAL: opponent modelling RL
• WoLF-PHC (Bowling and Veloso, 2002)
• Regret Matching (Hart and Mas-Colell, 2001)
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Learning in Mixed Groups

Test criteria:
• Convergence rate
• Final expected rewards
• Social welfare/fairness
• Solution rates:
• Nash equilibrium (NE)
• Pareto-optimality (PO)
• Welfare-optimality (WO)
• Fairness-optimality (FO)

• Tested in 78 distinct, strictly ordinal
2× 2 repeated games, e.g.

1,2 2,4
4,1 3,3

• Also tested in 500 random, strictly
ordinal 2× 2× 2 (3 agents)
repeated games
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Learning in Mixed Groups — No Clear Winner

reward
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100% is highest possible

No clear winner!

See (Albrecht and
Ramamoorthy, 2012) for
details



Reading (Optional)

• Useful summary: M. Bowling, M. Veloso (2000). An analysis of stochastic game
theory for multiagent reinforcement learning. CMU-CS-00-165

• Survey on opponent modelling:
S. Albrecht, P. Stone (2018). Autonomous agents modelling other agents: A
comprehensive survey and open problems. Artificial Intelligence, 258:66–95
https://arxiv.org/abs/1709.08071

• Tutorial with more algorithms and recent developments:
S. Albrecht, P. Stone (2017). Multiagent Learning: Foundations and Recent Trends
http://www.cs.utexas.edu/~larg/ijcai17_tutorial
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