Reinforcement Learning

Multi-Agent Reinforcement Learning II

Stefano V. Albrecht, Michael Herrmann 12 March 2024

- Independent learning
- Joint action learning
- Game-theoretic RL
- Opponent modelling RL
- Learning in mixed groups

Recap: Multi-Agent Systems

- Multiple agents interact in shared environment
- Each agent with own observations, actions, goals, ...
- Agents must coordinate actions to achieve their goals

Last time we discussed:

- Models of multi-agent interaction
 - \Rightarrow Repeated games, Stochastic games
- Solution concepts for games
 - \Rightarrow For common rewards: maximise expected return (like MDP)
 - \Rightarrow Zero-sum/general rewards: minimax, Nash equilibrium, Pareto, welfare, ...

Now: multi-agent learning

• Can agents *learn* to solve game through repeated interactions?

Basic approach: independent learning (IL)

- Each agent uses a single-agent RL algorithm (e.g. Q-learning)
- Treat game like MDP, agents do not model other agents

II can be successful:

- TD-Gammon used IL. beat Backgammon champion
- AlphaGo used IL. beat Go champion

Independent Q-Learning (we control agent *i*):

1: Initialise: $Q_i(s, a_i) = 0$ for all $s \in S, a_i \in A_i$

2: repeat:

- 3: Observe current state s
- 4: With probability ϵ : choose random action a_i
- 5: Else: choose greedy action $a_i \in \arg \max_{a_i} Q_i(s, a_i)$
- 6: Observe own reward r_i and next state s'

7:
$$Q_i(s, a_i) \leftarrow Q_i(s, a_i) + \alpha \left[r_i + \gamma \max_{a'_i} Q_i(s', a'_i) - Q_i(s, a) \right]$$

Problem with IL: high variance in updates

- Independent Q-learners: each agent *i* maintains Q-table $Q_i(s, a_i)$
- After reward $r_i = u_i(s, a_1, ..., a_n)$, update $Q_i(s, a_i)$ toward $r_i + \gamma \max_{a'_i} Q_i(s', a'_i)$

Repeated RPS:

- If $(a_1, a_2) = (R, S)$, then $r_1 = +1$
- If $(a_1, a_2) = (R, P)$, then $r_1 = -1$

⇒ Agent 1 cannot tell when reward is +1/-1! (unless we add actions to state; why?)

	R	Р	S
R	0,0	-1,1	1,-1
Ρ	1,-1	0,0	-1,1
S	-1,1	1,-1	0,0

Reduce variance by learning values for joint actions: $Q_i(s, a_1, ..., a_n)$

- Now can differentiate between +1/-1 rewards
- Space requirement is exponential in agents, $O(|A_1 \times \cdots \times A_n|)$
- Use function approximation to compress and generalise

Reduce variance by learning values for joint actions: $Q_i(s, a_1, ..., a_n)$

- Now can differentiate between +1/-1 rewards
- Space requirement is exponential in agents, $O(|A_1 \times \cdots \times A_n|)$
- Use function approximation to compress and generalise

But: $Q_i(s, a_1, ..., a_n)$ alone is no longer enough to find best action for *i*

- How to evaluate $\max_{a_i} Q_i(s, a_1, ..., a_n)$?
 - \Rightarrow Best action depends on actions of other agents!

How to select action from Q_i ? How to update Q_i ?

Joint action Q-tables define normal-form game:

- Agent *i* stores a Q-table Q_j for every agent *j* ∈ N
 (assumes agent can observe all agents' actions and rewards)
- Reward functions for normal-form game in state s are $u_j(a_1,...,a_n) = Q_j(s,a_1,...,a_n)$

We can solve the normal-form game defined by

$$\Gamma_{s} \doteq (u_{1} = Q_{1}(s), \cdots, u_{n} = Q_{n}(s))$$

Solution of Γ_s is a policy profile $(\pi_1, ..., \pi_n)$ with certain properties (e.g. NE) \Rightarrow Use π_i to select action for agent *i*

Value of Γ_s to agent *j* is expected reward under solution $(\pi_1, ..., \pi_n)$

$$Val_j(\Gamma_s) = \sum_{a \in A} u_j(a) \prod_{k \in N} \pi_k(a_k)$$

Now:

 \Rightarrow Update Q_j towards target: $r_j + \gamma Val_j(\Gamma_{s'})$

Joint Action Learning with Game Theory

JAL-GT (we control agent *i*):

- 1: Initialise: $Q_j(s, a) = 0$ for all $j \in N$ and $s \in S, a \in A$
- 2: repeat:
- 3: Observe current state s
- 4: With probability ϵ : choose random action a_i
- 5: Else: solve Γ_s to get policies $(\pi_1, ..., \pi_n)$, then sample action $a_i \sim \pi_i(s)$
- 6: Observe joint action $a = (a_1, ..., a_n)$, rewards r_j for all j, and next state s'
- 7: **for** each *j* **do**
- 8: $Q_j(s, a) \leftarrow Q_j(s, a) + \alpha \left[r_j + \gamma \operatorname{Val}_j(\Gamma_{s'}) Q_j(s, a) \right]$

Minimax-Q, Nash-Q, CE-Q

Minimax-Q uses minimax solution (Littman, 1994)

- Converges to unique value in two-player zero-sum games
 - \Rightarrow Any such game has unique minimax value
- Minimax profile can be computed with linear programming (LP)

Nash-Q uses Nash equilibrium (Hu and Wellman, 2003) CE-Q uses correlated equilibrium (Greenwald and Hall, 2003)

- Converges to equilibrium under highly restrictive conditions
 ⇒ Problem: often no unique equilibrium value in general-reward games
- Compute CE with LP, compute NE with quadratic programming

- Episodes start in left state with random ball assignment
- Agent wins episode if it moves the ball into opponent goal
- Agent loses ball to opponent if it moves into opponent's location

Against unknown opponent, optimal policy must randomise (right state; why?)

	MR		MM		QR		QQ	
	% won	games						
vs. random								
vs. hand-built								
vs. MR-challenger								
vs. MM-challenger								
vs. QR-challenger								
vs. QQ-challenger								

Table 3: Results for policies trained by minimax-Q (MR and MM) and Q-learning (QR and QQ).

- MR: minimax-Q trained against random opponent
- MM: minimax-Q trained against minimax-Q
- QR: Q-learning trained against random opponent
- QQ: Q-learning trained against Q-learning (IL)
- "X-challenger" is optimal policy against final policy learned by X

	MR		MM		QR		QQ	
	% won	games						
vs. random	99.3	6500	99.3	7200				
vs. hand-built	48.1	4300	53.7	5300				
vs. MR-challenger	35.0	4300						
vs. MM-challenger			37.5	4400				
vs. QR-challenger vs. QQ-challenger								

Table 3: Results for policies trained by minimax-Q (MR and MM) and Q-learning (QR and QQ).

- Minimax-Q learns "safe" policy that works against any opponent
 - \Rightarrow Minimax policy guarantees minimum average 50% win
- Lower % win against challenger because MR/MM did not fully converge during training, so could be exploited by optimal challenger

	MR		MM		QR		QQ	
	% won	games						
vs. random	99.3	6500	99.3	7200	99.4	11300	99.5	8600
vs. hand-built	48.1	4300	53.7	5300	26.1	14300	76.3	3300
vs. MR-challenger	35.0	4300						
vs. MM-challenger			37.5	4400				
vs. QR-challenger					0.0	5500		
vs. QQ-challenger							0.0	1200

Table 3: Results for policies trained by minimax-Q (MR and MM) and Q-learning (QR and QQ).

- Q-learning optimises against specific opponent, can learn strong performance
- Problem: overfits to opponent, does not generalise well to other opponents
 ⇒ Challenger exploits deterministic Q-learning policies

Game theory solutions are normative: they prescribe how agents should behave

- E.g. minimax assumes worst-case opponent
- E.g. NE assumes agents are perfect rational optimisers
 - \Rightarrow What if agents don't behave as prescribed by solution?

Game theory solutions are normative: they prescribe how agents should behave

- E.g. minimax assumes worst-case opponent
- E.g. NE assumes agents are perfect rational optimisers
 ⇒ What if agents don't behave as prescribed by solution?

Other approach: **opponent modelling with best response**

- Learn models of other agents to predict their actions
- Compute optimal action (best response) against agent models

Many kinds of opponent modelling:

- Policy reconstruction
- Type-based reasoning
- Classification
- Plan recognition

- Recursive reasoning
- Graphical methods
- Group modelling
- Implicit modelling

Autonomous Agents Modelling Other Agents: A Comprehensive Survey and Open Problems. Artificial Intelligence, 2018

Policy reconstruction: learn model $\hat{\pi}_i \approx \pi_i$ from observations

Conditional action frequency:

$$\hat{\pi}_j(s, a_j) \propto \sum_{t: s^t = s} [a_j^t = a_j]_1$$

Many modifications possible \rightarrow Ideas?

In general, can train model with supervised learning on pairs (s^t, a_i^t)

- E.g. decision tree, neural network, finite state machine, ...
- Model should support incremental updating

Expected value of action a_i in state s against models $\hat{\pi}_i$ is

$$EV(s,a_i) = \sum_{a_{-i}} Q(s,a_i,a_{-i}) \prod_{j \neq i} \hat{\pi}_j(s,a_j)$$

Assumes independent agents (why?)

 a_{-i} is action tuple for all agents except i

Best response is action with maximum expected value: $\arg \max_{a_i} EV(s, a_i)$

Use $EV(s, a_i)$ in place of Q-table for action selection and update targets

Joint Action Learning with Opponent Modelling

JAL-OM (we control agent *i*):

- 1: Initialise: $Q_i(s, a) = 0$ for all $s \in S, a \in A$; models $\hat{\pi}_j(s, \cdot) = \frac{1}{|A_i|}$ for $j \neq i$
- 2: repeat:
- 3: Observe current state s
- 4: With probability ϵ : choose random action a_i
- 5: Else: choose best-response action $\arg \max_{a_i} EV(s, a_i)$
- 6: Observe joint action $a = (a_1, ..., a_n)$, own reward r_i , and next state s'
- 7: **for** each *j* **do**
- 8: Update model $\hat{\pi}_j$ with new observations

9:
$$Q_i(s, a) \leftarrow Q_i(s, a) + \alpha \left[r_i + \gamma \max_{a'_i} EV(s', a'_i) - Q_i(s, a) \right]$$

Pacmans must catch the ghost

- Actions: move up, down, left, right
- States: (*P*₁, *P*₂, *G*) = locations (red dot) of pacmans and ghost
- Ghost moves randomly
- Reward to both pacmans: +1 if ghost is caught, else 0 ($\gamma = 0.8$)

Example: Multi-Pacman – 10x10 Grid, 2 Agents, 1 Ghost

Example: Level-Based Foraging

Robots must collect items in minimal time

- Actions:
 - move up, down, left, right
 - try to load item
- Robots can load item if positioned next to item and sum of robots' levels ≥ item level
- Reward to robot *i*:
 - +1 if involved in successful loading
 - -1 if trying to move outside grid
 - 0 otherwise

Example: Level-Based Foraging – 5x5 Grid, 2 Agents, 1 Item

24

Standard mode of operation is self-play: all agents use same algorithm

Bonus question: how do algorithms perform in mixed groups?

Tested 5 algorithms in mixed learning groups:

- Nash-Q: game-theoretic RL
- JAL and CJAL: opponent modelling RL
- WoLF-PHC (Bowling and Veloso, 2002)
- Regret Matching (Hart and Mas-Colell, 2001)

Learning in Mixed Groups

Test criteria:

- Convergence rate
- Final expected rewards
- Social welfare/fairness
- Solution rates:
 - Nash equilibrium (NE)
 - Pareto-optimality (PO)
 - Welfare-optimality (WO)
 - Fairness-optimality (FO)

 Tested in 78 distinct, strictly ordinal 2 × 2 repeated games, e.g.

 Also tested in 500 random, strictly ordinal 2 × 2 × 2 (3 agents) repeated games

Learning in Mixed Groups - No Clear Winner

- Useful summary: M. Bowling, M. Veloso (2000). An analysis of stochastic game theory for multiagent reinforcement learning. CMU-CS-00-165
- Survey on opponent modelling:

S. Albrecht, P. Stone (2018). Autonomous agents modelling other agents: A comprehensive survey and open problems. Artificial Intelligence, 258:66–95 https://arxiv.org/abs/1709.08071

• Tutorial with more algorithms and recent developments: S. Albrecht, P. Stone (2017). Multiagent Learning: Foundations and Recent Trends http://www.cs.utexas.edu/~larg/ijcai17_tutorial

References

- S. Albrecht and S. Ramamoorthy. Comparative evaluation of MAL algorithms in a diverse set of ad hoc team problems. In *Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems*, pages 349–356, 2012.
- M. Bowling and M. Veloso. Multiagent learning using a variable learning rate. *Artificial Intelligence*, 136(2):215–250, 2002.
- A. Greenwald and K. Hall. Correlated Q-learning. In *Proceedings of the 20th International Conference on Machine Learning*, pages 242–249, 2003.
- S. Hart and A. Mas-Colell. A reinforcement procedure leading to correlated equilibrium. *Economic Essays: A Festschrift for Werner Hildenbrand*, pages 181–200, 2001.

- J. Hu and M. Wellman. Nash Q-learning for general-sum stochastic games. *Journal of Machine Learning Research*, 4:1039–1069, 2003.
- M. Littman. Markov games as a framework for multi-agent reinforcement learning. In *Proceedings of the 11th International Conference on Machine Learning*, pages 157–163, 1994.