Reinforcement Learning

Multi-Armed Bandits

Stefano V. Albrecht, Michael Herrmann
19 January 2024

Lecture Outline

- Multi-armed bandit problem
- Exploration-exploitation dilemma
- Action-value methods
- Gradient methods

Multi-Armed Bandit Problem

Multi-armed bandit (MAB) problem:

- There are k actions ("arms") to choose from
- On each time step $t=1,2,3, \ldots$, you choose an action $A_{t}=a$ and receive a scalar reward sampled from some unknown random variable R_{t}, where

Exploration-Exploitation Dilemma

- We can form action-value estimates:

$$
Q_{t}(a) \approx q_{*}(a)
$$

- The greedy action at time t is:

$$
A_{t}^{*} \doteq \arg \max _{a} Q_{t}(a)
$$

- Exploitation: choose $A_{t}=A_{t}^{*} ;$ Exploration: choose $A_{t} \neq A_{t}^{*}$

Exploration-exploitation problem:

How to balance exploration and exploitation to maximise rewards?
\Rightarrow Can't exploit or explore all the time (why?)

Action-Value Methods

Action-value methods:

- Learn action-value estimates
- E.g. sample average:

$$
Q_{\mathrm{t}}(a)=\frac{1}{N_{\mathrm{t}}(a)} \sum_{\tau=1}^{t-1} R_{\tau} *\left[A_{\tau}=a\right]_{1}
$$

where $N_{t}(a)$ is number of times action a was selected until before t

- Sample average converges to true action values in the limit:

$$
\lim _{N_{t}(a) \rightarrow \infty} Q_{t}(a)=q_{*}(a)
$$

ϵ-Greedy Action Selection

- Greedy action selection:

$$
A_{t}=A_{t}^{*}=\arg \max _{a} Q_{t}(a)
$$

- ϵ-greedy action selection:

$$
A_{t}= \begin{cases}A_{t}^{*} & \text { with probability } 1-\epsilon \\ \text { random action } & \text { otherwise }\end{cases}
$$

- Simplest way to balance exploration and exploitation

10-Armed Bandit Testbed

ϵ-Greedy Methods on the 10-Armed Testbed

Where is $\epsilon=0.1$ after 10,000 time steps?

Averaging Learning Rule

- Sample average (for 1-armed bandit):

$$
Q_{n}=\frac{R_{1}+R_{2}+\ldots+R_{n-1}}{n-1}
$$

- Can compute incrementally:

$$
Q_{n+1}=Q_{n}+\frac{1}{n}\left[R_{n}-Q_{n}\right]
$$

- This is a standard form for update rules:

NewEstimate \leftarrow OldEstimate + StepSize [Target - OldEstimate]

Derivation of Incremental Update

$$
\begin{aligned}
Q_{n+1} & =\frac{1}{n} \sum_{i=1}^{n} R_{i} \\
& =\frac{1}{n}\left(R_{n}+\sum_{i=1}^{n-1} R_{i}\right) \\
& =\frac{1}{n}\left(R_{n}+(n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i}\right) \\
& =\frac{1}{n}\left(R_{n}+(n-1) Q_{n}\right) \\
& =\frac{1}{n}\left(R_{n}+n Q_{n}-Q_{n}\right) \\
& =Q_{n}+\frac{1}{n}\left[R_{n}-Q_{n}\right]
\end{aligned}
$$

Simple Bandit Algorithm

A simple bandit algorithm

Initialize, for $a=1$ to k :

$$
\begin{aligned}
& Q(a) \leftarrow 0 \\
& N(a) \leftarrow 0
\end{aligned}
$$

Loop forever:
$A \leftarrow\left\{\begin{array}{ll}\arg \max _{a} Q(a) & \text { with probability } 1-\varepsilon \quad \text { (breaking ties randomly) } \\ \text { a random action } & \text { with probability } \varepsilon\end{array} \quad\right.$
$R \leftarrow \operatorname{bandit}(A)$
$N(A) \leftarrow N(A)+1$
$Q(A) \leftarrow Q(A)+\frac{1}{N(A)}[R-Q(A)]$

Non-Stationary Action Values

Suppose the true action values change slowly over time

- We then say that the problem is non-stationary
- Sample average not appropriate (why?)
- Many RL methods have to deal with non-stationarity (e.g. due to bootstrapping)

Have to "track" action values, e.g. using step size parameter $\alpha \in(0,1]$

$$
Q_{n+1}=Q_{n}+\alpha\left[R_{n}-Q_{n}\right]
$$

Standard Stochastic Approximation Convergence Conditions

Estimates $Q_{t}(a)$ will converge to true values $q_{*}(a)$ with probability 1 if:

$$
\sum_{n=1}^{\infty} \alpha_{n}(a) \rightarrow \infty \quad \text { and } \quad \sum_{n=1}^{\infty} \alpha_{n}^{2}(a)<\infty
$$

- e.g. $\alpha_{n}=\frac{1}{n}$
- not $\alpha_{n}=\frac{1}{n^{2}}$
- not $\alpha_{n}=c$ (constant)

Optimistic Initial Values

All methods so far depend on initial estimates Q_{1}
\Rightarrow Can incentivise exploration by using "optimistic" initial values

Upper Confidence Bound (UCB) Action Selection

Instead exploring uniform-randomly (ϵ-greedy), explore "promising" actions first. Upper Confidence Bound (UCB): estimate upper confidence bounds on action value estimates and choose action with highest bound:

> (Note: standard UCB

$$
A_{t}=\left\{\begin{array}{l}
a \text { if } N_{t}(a)=0, \text { else } \\
\arg \max _{a}\left[Q_{t}(a)+c \sqrt{\log t / N_{t}(a)}\right]
\end{array}\right.
$$

$$
\text { assumes rewards in }[0,1])
$$

Intuition: second term is size of one-sided confidence interval for average reward

Upper Confidence Bound (UCB) Action Selection

Gradient Bandit Algorithm

Greedy, ϵ-greedy, and UCB use estimates of $q_{*}(a)$

- Can we select actions without computing estimates of q_{*} ?

Gradient Bandit Algorithm

Gradient-based policy optimisation:

- Use differentiable policy $\pi_{t}(a \mid \theta)$ with parameter vector $\theta \in \mathbb{R}^{d}$

$$
\pi_{t}(a \mid \theta)=\operatorname{Pr}\left\{A_{t}=a \mid \theta_{t}=\theta\right\}
$$

- Use gradient ascent on policy parameters to maximise expected reward

$$
\theta_{t+1}=\theta_{t}+\alpha \nabla_{\theta_{t}} \mathbb{E}\left[R_{t}\right]
$$

Gradient Bandit Algorithm with Softmax

- Represent π_{t} with softmax distribution:

$$
\pi_{t}(a)=\frac{e^{H_{t}(a)}}{\sum_{b} e^{H_{t}(b)}}
$$

$H_{t}(a)$ are preference values (parameters)

- Update policy parameters:

$$
\begin{aligned}
H_{t+1}(a) & =H_{t}(a)+\alpha \frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)} \\
& =H_{t}(a)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(\left[a=A_{t}\right]_{1}-\pi_{t}(a)\right)
\end{aligned}
$$

with baseline $\bar{R}_{t}=\frac{1}{t} \sum_{\tau=1}^{t} R_{\tau}$

Gradient Bandit Algorithm

Deterministic Policies

$$
H_{t+1}(a)=H_{t}(a)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(\left[a=A_{t}\right]_{1}-\pi_{t}(a)\right)
$$

Bonus questions:

-What if some actions have zero probability?

- E.g. what if initial policy is deterministic?

$$
\pi_{1}(a)=1 \text { for some } a
$$

Summary Comparison of Bandit Algorithms

Conclusion

Multi-armed bandit problem is simplest type of RL problem

- Bandit algorithms seek to maximise total reward over extended time
- Must balance exploration and exploitation - a key problem in RL
- First building block for more complex RL algorithms

Reading

Required:

- RL book, Chapter 2 (2.1-2.8) (Box "The Bandit Gradient Algorithm as Stochastic Gradient Ascent" in Sec 2.8 is not examined)

Optional:

- UCB paper:
P. Auer, N. Cesa-Bianchi, P. Fischer (2002). Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47(2-3), 235-256.
- Bandit Algorithms
by Tor Lattimore and Csaba Szepesvári
Free download: https://tor-lattimore.com/downloads/book/book.pdf

[Extra/not examined] Derivation of Gradient Bandit Algorithm (1/4)

In exact gradient ascent:

$$
H_{t+1} \doteq H_{t}(a)+\alpha \frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)} \quad \text { where } \quad \mathbb{E}\left[R_{t}\right]=\sum_{x} \pi_{t}(x) q_{*}(x)
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (1/4)

In exact gradient ascent:

$$
\begin{aligned}
& H_{t+1} \doteq H_{t}(a)+\alpha \frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)} \text { where } \quad \mathbb{E}\left[R_{t}\right]=\sum_{x} \pi_{t}(x) q_{*}(x) \\
& \frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)}=\frac{\partial}{\partial H_{t}(a)}\left[\sum_{x} \pi_{t}(x) q_{*}(x)\right]
\end{aligned}
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (1/4)

In exact gradient ascent:

$$
\begin{aligned}
H_{t+1} \doteq H_{t}(a)+\alpha \frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)} \quad \text { where } \quad \mathbb{E}\left[R_{t}\right]=\sum_{x} \pi_{t}(x) q_{*}(x) \\
\begin{aligned}
\frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)} & =\frac{\partial}{\partial H_{t}(a)}\left[\sum_{x} \pi_{t}(x) q_{*}(x)\right] \\
& =\sum_{x} q_{*}(x) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)}
\end{aligned} \quad \text { (product derivative rule) }
\end{aligned}
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (1/4)

In exact gradient ascent:

$$
\begin{array}{rlr}
H_{t+1} \doteq H_{t}(a)+\alpha \frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)} \text { where } \quad \mathbb{E}\left[R_{t}\right]=\sum_{x} \pi_{t}(x) q_{*}(x) \\
\begin{array}{rlr}
\frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)} & =\frac{\partial}{\partial H_{t}(a)}\left[\sum_{x} \pi_{t}(x) q_{*}(x)\right] & \\
& =\sum_{x} q_{*}(x) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)} & \text { (product derivative rule) } \\
& =\sum_{x}\left(q_{*}(x)-B_{t}\right) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)} & \quad\left(B_{t}\right. \text { is "baseline") }
\end{array}
\end{array}
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (2/4)

$$
\frac{\partial \pi_{t}(x)}{\partial H_{t}(a)}=\frac{\partial}{\partial H_{t}(a)} \pi_{t}(x)
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (2/4)

$$
\begin{aligned}
\frac{\partial \pi_{t}(x)}{\partial H_{t}(a)} & =\frac{\partial}{\partial H_{t}(a)} \pi_{t}(x) \\
& =\frac{\partial}{\partial H_{t}(a)}\left[\frac{e^{H_{t}(x)}}{\sum_{y} e^{H_{t}(y)}}\right]
\end{aligned}
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (2/4)

$$
\begin{aligned}
\frac{\partial \pi_{t}(x)}{\partial H_{t}(a)} & =\frac{\partial}{\partial H_{t}(a)} \pi_{t}(x) \\
& =\frac{\partial}{\partial H_{t}(a)}\left[\frac{e^{H_{t}(x)}}{\sum_{y} e^{H_{t}(y)}}\right] \\
& =\frac{\frac{\partial e^{H_{t}(x)}}{\partial H_{t}(a)} \sum_{y} e^{H_{t}(y)}-e^{H_{t}(x)} \frac{\partial \sum_{y} e^{H_{t}(y)}}{\partial H_{t}(a)}}{\left(\sum_{y} e^{H_{t}(y)}\right)^{2}} \quad \text { (quotient derivative rule) }
\end{aligned}
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (2/4)

$$
\begin{array}{rlr}
\frac{\partial \pi_{t}(x)}{\partial H_{t}(a)} & =\frac{\partial}{\partial H_{t}(a)} \pi_{t}(x) \\
& =\frac{\partial}{\partial H_{t}(a)}\left[\frac{e^{H_{t}(x)}}{\sum_{y} e^{H_{t}(y)}}\right] \\
& =\frac{\frac{\partial e^{H_{t}(x)}}{\partial H_{t}(a)} \sum_{y} e^{H_{t}(y)}-e^{H_{t}(x)} \frac{\partial \sum_{y} e^{H_{t}(y)}}{\partial H_{t}(a)}}{\left(\sum_{y} H^{H_{t}(y)}\right)^{2}} & \\
& \text { (quotient derivative rule) } \\
& =\frac{[a=x]_{1} e^{H_{t}(x)} \sum_{y} e^{H_{t}(y)}-e^{H_{t}(x)} e^{H_{t}(a)}}{\left(\sum_{y} e^{\left.H_{t}(y)\right)^{2}}\right.} & \begin{array}{l}
\left([b]_{1}=1 \text { iff } b \text { is } \quad \text { true, else } 0\right)
\end{array} \quad\left(\frac{\partial e^{x}}{\partial x}=e^{x}\right)
\end{array}
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (2/4)

$$
\begin{array}{rlr}
\frac{\partial \pi_{t}(x)}{\partial H_{t}(a)} & =\frac{\partial}{\partial H_{t}(a)} \pi_{t}(x) \\
& =\frac{\partial}{\partial H_{t}(a)}\left[\frac{e^{H_{t}(x)}}{\sum_{y} e^{H_{t}(y)}}\right] \\
& =\frac{\frac{\partial H^{H_{t}(x)}}{\partial H_{t}(a)} \sum_{y} e^{H_{t}(y)}-e^{H_{t}(x)} \frac{\partial \sum_{y} e^{H_{t}(y)}}{\partial H_{t}(a)}}{\left(\sum_{y} e^{H_{t}(y)}\right)^{2}} & \text { (quotient derivative rule) } \\
& =\frac{[a=x]_{1} e^{H_{t}(x)} \sum_{y} e^{H_{t}(y)}-e^{H_{t}(x)} e^{H_{t}(a)}}{\left(\sum_{y} e^{H_{t}(y)}\right)^{2}} & \begin{array}{l}
\text { ([b] }=1 \text { iff } b \text { is } \quad \text { true, else } 0) \quad\left(\frac{\partial e^{x}}{\partial x}=e^{x}\right) \\
\end{array} \\
& =\frac{[a=x]_{1} e^{H_{t}(x)}}{\sum_{y} e^{H_{t}(y)}}-\frac{e^{H_{t}(x)} e^{H_{t}(a)}}{\left(\sum_{y} e^{\left.H_{t}(y)\right)^{2}}\right.} &
\end{array}
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (2/4)

$$
\begin{array}{rlr}
\frac{\partial \pi_{t}(x)}{\partial H_{t}(a)} & =\frac{\partial}{\partial H_{t}(a)} \pi_{t}(x) \\
& =\frac{\partial}{\partial H_{t}(a)}\left[\frac{e^{H_{t}(x)}}{\sum_{y} e^{H_{t}(y)}}\right] \\
& =\frac{\frac{\partial e^{H_{t}(x)}}{\partial H_{t}(a)} \sum_{y} e^{H_{t}(y)}-e^{H_{t}(x)} \frac{\partial \sum_{y} e^{H_{t}(y)}}{\partial H_{t}(a)}}{\left(\sum_{y} e^{H_{t}(y)}\right)^{2}} & \text { (quotient derivative rule) } \\
& =\frac{[a=x]_{1} e^{H_{t}(x)} \sum_{y} e^{H_{t}(y)}-e^{H_{t}(x)} e^{H_{t}(a)}}{\left(\sum_{y} e^{\left.H_{t}(y)\right)^{2}}\right.} \quad \begin{array}{ll}
\left([b]_{1}=1 \text { iff } b \text { is } \quad \text { true, else 0) } \quad\left(\frac{\partial e^{x}}{\partial x}=e^{x}\right)\right. \\
& =\frac{[a=x]_{1} e^{H_{t}(x)}}{\sum_{y} e^{H_{t}(y)}-\frac{e^{H_{t}(x)} e^{H_{t}(a)}}{\left(\sum_{y} e^{H_{t}(y)}\right)^{2}}} \\
& =[a=x]_{1} \pi_{t}(x)-\pi_{t}(x) \pi_{t}(a) \quad=\pi_{t}(x)\left([a=x]_{1}-\pi_{t}(a)\right)
\end{array}
\end{array}
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (3/4)

$$
\frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)}=\sum_{x} \pi_{t}(x)\left(q_{*}(x)-B_{t}\right) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)} / \pi_{t}(x)
$$

$$
\text { (multiply by } \pi_{t}(x) / \pi_{t}(x) \text {) }
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (3/4)

$$
\begin{array}{rlr}
\frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)} & =\sum_{x} \pi_{t}(x)\left(q_{*}(x)-B_{t}\right) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)} / \pi_{t}(x) & \text { (multiply by } \left.\pi_{t}(x) / \pi_{t}(x)\right) \\
& =\mathbb{E}\left[\left(q_{*}\left(A_{t}\right)-B_{t}\right) \frac{\partial \pi_{t}\left(A_{t}\right)}{\partial H_{t}(a)} / \pi_{t}\left(A_{t}\right)\right] & \text { (write as expectation over } x \text {) }
\end{array}
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (3/4)

$$
\begin{array}{rlrl}
\frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)} & =\sum_{x} \pi_{t}(x)\left(q_{*}(x)-B_{t}\right) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)} / \pi_{t}(x) & \text { (multiply by } \left.\pi_{t}(x) / \pi_{t}(x)\right) \\
& =\mathbb{E}\left[\left(q_{*}\left(A_{t}\right)-B_{t}\right) \frac{\partial \pi_{t}\left(A_{t}\right)}{\partial H_{t}(a)} / \pi_{t}\left(A_{t}\right)\right] & & \text { (write as expectation over } x \text {) } \\
& =\mathbb{E}\left[\left(R_{t}-\bar{R}_{t}\right) \frac{\partial \pi_{t}\left(A_{t}\right)}{\partial H_{t}(a)} / \pi_{t}\left(A_{t}\right)\right] & \left(\mathbb{E}\left[R_{t} \mid A_{t}\right]=q_{*}\left(A_{t}\right) \text { and } B_{t} \doteq \bar{R}_{t}\right)
\end{array}
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (3/4)

$$
\begin{array}{rlr}
\frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)} & =\sum_{x} \pi_{t}(x)\left(q_{*}(x)-B_{t}\right) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)} / \pi_{t}(x) & \text { (multiply by } \left.\pi_{t}(x) / \pi_{t}(x)\right) \\
& =\mathbb{E}\left[\left(q_{*}\left(A_{t}\right)-B_{t}\right) \frac{\partial \pi_{t}\left(A_{t}\right)}{\partial H_{t}(a)} / \pi_{t}\left(A_{t}\right)\right] & \text { (write as expectation over } x \text {) } \\
& =\mathbb{E}\left[\left(R_{t}-\bar{R}_{t}\right) \frac{\partial \pi_{t}\left(A_{t}\right)}{\partial H_{t}(a)} / \pi_{t}\left(A_{t}\right)\right] \quad & \left(\mathbb{E}\left[R_{t} \mid A_{t}\right]=q_{*}\left(A_{t}\right) \text { and } B_{t} \doteq \bar{R}_{t}\right) \\
& =\mathbb{E}\left[\left(R_{t}-\bar{R}_{t}\right) \pi_{t}\left(A_{t}\right)\left(\left[a=A_{t}\right]_{1}-\pi_{t}(a)\right) / \pi_{t}\left(A_{t}\right)\right]
\end{array}
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (3/4)

$$
\begin{array}{rlr}
\frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)} & =\sum_{x} \pi_{t}(x)\left(q_{*}(x)-B_{t}\right) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)} / \pi_{t}(x) & \text { (multiply by } \left.\pi_{t}(x) / \pi_{t}(x)\right) \\
& =\mathbb{E}\left[\left(q_{*}\left(A_{t}\right)-B_{t}\right) \frac{\partial \pi_{t}\left(A_{t}\right)}{\partial H_{t}(a)} / \pi_{t}\left(A_{t}\right)\right] & \text { (write as expectation over } x \text {) } \\
& =\mathbb{E}\left[\left(R_{t}-\bar{R}_{t}\right) \frac{\partial \pi_{t}\left(A_{t}\right)}{\partial H_{t}(a)} / \pi_{t}\left(A_{t}\right)\right] \quad\left(\mathbb{E}\left[R_{t} \mid A_{t}\right]=q_{*}\left(A_{t}\right) \text { and } B_{t} \doteq \bar{R}_{t}\right) \\
& =\mathbb{E}\left[\left(R_{t}-\bar{R}_{t}\right) \pi_{t}\left(A_{t}\right)\left(\left[a=A_{t}\right]_{1}-\pi_{t}(a)\right) / \pi_{t}\left(A_{t}\right)\right] \\
& =\mathbb{E}\left[\left(R_{t}-\bar{R}_{t}\right)\left(\left[a=A_{t}\right]_{1}-\pi_{t}(a)\right)\right]
\end{array}
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (3/4)

$$
\begin{array}{rlr}
\frac{\partial \mathbb{E}\left[R_{t}\right]}{\partial H_{t}(a)} & =\sum_{x} \pi_{t}(x)\left(q_{*}(x)-B_{t}\right) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)} / \pi_{t}(x) & \text { (multiply by } \left.\pi_{t}(x) / \pi_{t}(x)\right) \\
& =\mathbb{E}\left[\left(q_{*}\left(A_{t}\right)-B_{t}\right) \frac{\partial \pi_{t}\left(A_{t}\right)}{\partial H_{t}(a)} / \pi_{t}\left(A_{t}\right)\right] & \text { (write as expectation over } x \text {) } \\
& =\mathbb{E}\left[\left(R_{t}-\bar{R}_{t}\right) \frac{\partial \pi_{t}\left(A_{t}\right)}{\partial H_{t}(a)} / \pi_{t}\left(A_{t}\right)\right] \quad\left(\mathbb{E}\left[R_{t} \mid A_{t}\right]=q_{*}\left(A_{t}\right) \text { and } B_{t} \doteq \bar{R}_{t}\right) \\
& =\mathbb{E}\left[\left(R_{t}-\bar{R}_{t}\right) \pi_{t}\left(A_{t}\right)\left(\left[a=A_{t}\right]_{1}-\pi_{t}(a)\right) / \pi_{t}\left(A_{t}\right)\right] \\
& =\mathbb{E}\left[\left(R_{t}-\bar{R}_{t}\right)\left(\left[a=A_{t}\right]_{1}-\pi_{t}(a)\right)\right]
\end{array}
$$

Thus:

$$
H_{t+1}(a)=H_{t}(a)+\alpha\left(R_{t}-\bar{R}_{t}\right)\left(\left[a=A_{t}\right]_{1}-\pi_{t}(a)\right)
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (4/4)

$$
\sum_{x}\left(q_{*}(x)-B_{t}\right) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)}=\sum_{x}\left(q_{*}(x)-B_{t}\right) \pi_{t}(x)\left([a=x]_{1}-\pi_{t}(a)\right)
$$

Baseline B_{t} does not change expectation because:

[Extra/not examined] Derivation of Gradient Bandit Algorithm (4/4)

$$
\sum_{x}\left(q_{*}(x)-B_{t}\right) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)}=\sum_{x}\left(q_{*}(x)-B_{t}\right) \pi_{t}(x)\left([a=x]_{1}-\pi_{t}(a)\right)
$$

Baseline B_{t} does not change expectation because:

$$
\begin{aligned}
& \sum_{x}\left(q_{*}(x) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)}-B_{t} \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)}\right) \\
= & \sum_{x} q_{*}(x) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)}-\sum_{x} B_{t} \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)} \\
= & \ldots-B_{t} \underbrace{\sum_{x} \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)}}_{=0}
\end{aligned}
$$

[Extra/not examined] Derivation of Gradient Bandit Algorithm (4/4)

$$
\sum_{x}\left(q_{*}(x)-B_{t}\right) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)}=\sum_{x}\left(q_{*}(x)-B_{t}\right) \pi_{t}(x)\left([a=x]_{1}-\pi_{t}(a)\right)
$$

Baseline B_{t} does not change expectation because:

$$
\begin{aligned}
& \sum_{x}\left(q_{*}(x) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)}-B_{t} \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)}\right) \\
= & \sum_{x} q_{*}(x) \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)}-\sum_{x} B_{t} \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)} \\
= & \ldots-B_{t} \underbrace{\sum_{x} \frac{\partial \pi_{t}(x)}{\partial H_{t}(a)}}_{=0}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{x} \pi_{t}(x)\left([a=x]_{1}-\pi_{t}(a)\right) \\
= & \sum_{x} \pi_{t}(x)[a=x]_{1}-\sum_{x} \pi_{t}(x) \pi_{t}(a) \\
= & \pi_{t}(a)-\sum_{x} \pi_{t}(x) \pi_{t}(a) \\
= & \pi_{t}(a)-\pi_{t}(a) \underbrace{\sum_{x} \pi_{t}(x)}_{=1}=0
\end{aligned}
$$

