Reinforcement Learning

Markov Decision Processes

Stefano V. Albrecht, Michael Herrmann
23 January 2024

\~ THE UNIVERSITY of EDINBURGH

Lecture Outline

Markov decision process

Policies, goals, rewards, returns

Value functions and Bellman equation

Optimal value functions and policies

The Agent-Environment Interface

:| Agent Il
state reward action

St Rt Az

P Rt+1 (

< Environment]4—
G

Agent and environment interact at discrete time steps: t =0,1,2,3, ...

e Agent observes environment state attime t: S € S
e and selects an action atstept: A, € A

e Environment sends back reward Ry € R and new state S¢yq € S

The Agent-Environment Interface

:| Agent Il
state reward action

St Rl‘ At

o Rt+1 (
<G| Environment ‘4—
G
. e Rt+l Rt+2 Rt+3 PR
A, A Arn Apz

Markov Decision Process

Markov decision process (MDP) consists of:
e State space §

e Action space A ’MDP is finite if S, A, R are ﬁnite‘
Reward space R

Environment dynamics:

p(s',rls,a) = Pr{Sey1 =5 Rip1=r|St=s,Ar=a}

p(s'ls,a) = Pr{Sy1=5"|Si=s,Ai=a} = Zp(s/, rs,a)
rerR

I’(S,a) = IE[RH-'I ’Stzstt:a] = Zer(S’,r\S,a)

rerR s'eS

Markov Property

Markov property:
Future state and reward are independent of past states and actions, given the
current state and action:

Pr{St41, Reg1 | St At, St—1,At—1, .-, S0, Ao} = Pr{Ses1, Req1 | St, At}

e State S¢ is sufficient summary of interaction history

= Means optimal decision in S; does not depend on past decisions

e Designing compact Markov states is “engineering work” in RL

Example: Recycling Robot

e Mobile robot must collect cans in office

e States:
- high battery level
- low battery level

e Actions:
- search for can
- wait for someone to bring can
- recharge battery at charging station

e Rewards: number of cans collected

Example: Recycling Robot

S a s’ p(s'|s,a) | r(s,a,s’)
high search high o Tsearch
high search low 1l — o Tsearch
low search high | 1 -7 -3

low search low B Tsearch
high wait high 1 Twait
high wait low 0 -

low wait high | O -

low wait low 1 Twait
low recharge high 1 0

low recharge low 0 -

Example: Recycling Robot

1B, -3

1 . Tywait

B , T'search
search

1,0 recharge

search

1 Twait
O, Tsearch I-0, Tsearch ’

MDP is controlled with a policy:

See Tutorial 2 & 4

m(a|s) = probability of selecting action a when in state s

mw(a|s) search wait recharge
high 0.9 0.1 0
low 0.2 0.3 0.5

Special case: deterministic policy 7(s) = a

m(s)

high — search

low — recharge

Remark: MDP coupled with fixed
policy 7 is a “Markov chain”

Goals and Rewards

Agent’s goal is to learn a policy that maximises cumulative reward

Reward hypothesis:
All goals can be described by the maximisation of the expected value of
cumulative scalar rewards.

Rewards specify what the goal is

e Rewards do not specify how to achieve goal
e But if done carefully, good reward design may help to learn faster

= Like state design, reward design is “engineering work” in RL

Total Return

Formally, policy should maximise expected return:
Gt = Rey1+ Rey2 + Reys + ... + Ry
= Rey1 + Geyq
where T is final time step

Assumes terminating episodes:
e e.g Chess game: terminates when one player wins
e e.g Furniture building: terminates when furniture completed

e Can enforce termination by setting number of allowed time steps

10

Discounted Return

For non-terminating (infinite) episodes, can use discount rate v € [0, 1):

(o]
Gt = Rep1 + YRep2 + VR + ... = Z’YthJer
k=0

low ~ is shortsighted

= Rt11 + G
A high ~ is farsighted

e e.g Financial portfolio management

e e.g Server monitoring and maintenance

n

Discounted Return

For non-terminating (infinite) episodes, can use discount rate v € [0, 1):
(o.0]
Gt = Ret1 +YRer2 + Y Regs + oo = ZV’?RHW?
= Rt1 + 7G4 ! low v is shortsighted
high ~ is farsighted
e Sum is finite for v < 1and bounded rewards Ry < rmax :

) 00 1
Z thRH-H—I? < Imax Z ’7’? = I'max m
k=0 k=0

n

Discounted Return

For non-terminating (infinite) episodes, can use discount rate v € [0, 1):

o
Gt = Rep1 + YRep2 + 7V Reys + .o = Z’Y’?RH-H-I?
k=0
= Riy1 + 7G4 low ~ is shortsighted
high ~ is farsighted
e Sum is finite for v < 1 and bounded rewards Rt < Imax :

) 00 1
Z thRH-H—I? < Imax Z ’7’? = I'max 1= ~
k=0 k=0

e Definition also works for terminating episodes if terminal states are “absorbing”:

absorbing state always transitions into itself and gives reward 0

n

State Value Function

Given policy 7, can quantify expected return in any state s with state-value function:

Va(S) = Ex[Gi|St=5] = Ex[Ris1+YRes2 + 7 Reys + ... | St = 5]

12

State Value Function

Given policy 7, can quantify expected return in any state s with state-value function:
Va(s) = Ex[GeSt =5] = Ex[Res1 +YRey2 + 7’ Resz + ... | St =]

In general, assuming terminating episodes (need more math for non-terminating
episodes), let H(s) be the set of all possible episodes starting in s:

H(s) = {h = (s, a’, "1 s a1 /42 stH2 T STy | st =s)

12

State Value Function

Given policy m, can quantify expected return in any state s with state-value function:
Va(S) = Ex[Gi|St=5] = Ex[Ris1+YRes2 + 7 Reys + ... | St = 5]

In general, assuming terminating episodes (need more math for non-terminating
episodes), let H(s) be the set of all possible episodes starting in s:

s) = {h=(st,at, it st gt 2 st2 T 6T | st = s)

Each h € H(s) has associated probability of occurring and cumulative reward:

.
Pr(h|r) = HTra|s (s7H,rtsT,am) and G(h) =D 4T

T=t

12

State Value Function

Given policy m, can quantify expected return in any state s with state-value function:
Va(S) = Ex[Gi|St=5] = Ex[Ris1+YRes2 + 7 Reys + ... | St = 5]

In general, assuming terminating episodes (need more math for non-terminating
episodes), let H(s) be the set of all possible episodes starting in s:

s) = {h=(st,at, it st gt 2 st2 T 6T | st = s)

Each h € H(s) has associated probability of occurring and cumulative reward:

.
Pr(h|r) = HTra|s (s7H,rtsT,am) and G(h) =D 4T

T=t

Then compute state value as vx(s) = > ey (s) Pr(hlm) G(h) »

State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

Markov: past states/actions don’t
Va(S) = Ex[Gt|St = 5] matter given current state

13

State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

Markov: past states/actions don’t
Va(S) = Ex[Gt|St = 5] matter given current state

= Ex[Rer1 +7Gey1|St = 9]

13

State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

Markov: past states/actions don’t
Va(S) = Ex[Gt|St = 5] matter given current state

= Ex[Rer1 +7Gey1|St = 9]

=> w(als)> _p(s',rla,s) [r+ vEr[Gra|Seir = ']

s'r

13

State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

Markov: past states/actions don’t
Va(S) = Ex[Gt|St = 5] matter given current state

= Ex[Rer1 +7Gey1|St = 9]

=> w(als)> _p(s',rla,s) [r+ vEr[Gra|Seir = ']

s'r

=> w(als)>_p(s',rls,a) [r+ v« (s)]

13

State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

Markov: past states/actions don’t
Va(S) = Ex[Gt|St = 5] matter given current state

= Ex[Rer1 +7Gey1|St = 9]
S

=> w(als)> _p(s',rla,s) [r+ vEr[Gra|Seir = '] /TN
a sir a
= Zw(a|s)2p(s’,r|s,a) [r+va(s")] A A AT
a s'r /

OO OO OO0s

One-step look-ahead tree 5

Action Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

Ve (S) = Er[Gy|St = 3]

= m(als) Y _p(s',rls,a) [r + va(s')]

Action Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

Ve (S) = Er[Gy|St = 3]

= m(als) Y _p(s',rls,a) [r + va(s')]

Can also define action-value function:
Gr(s,) = Ex[Gt|St = 5, At = q] /N /
S

- Z p(S/, I”S, O) [I’ + ’YV”(S/)]

shr

Optimal Value Functions and Policies

Policy 7 is optimal if
Vr(S) = Vi(S) = max vy (s)

qW(S,G) = Q*(S7a) = ma,\x QW’(Sv G)

Because of the Bellman equation, this means that for any optimal policy =

VA VS Ve(S) > va(S)

15

Optimal Value Functions and Policies

We can write optimal value function without reference to policy:

Vi(s) = max > p(s' s, a) [r+ 7y va(s)]

o Bellman optimality

equations
q«(s,a) = > _p(s',rls,a) [H ymaxq.(s', G’)]
a/

s'r

(vs) 2 () %0
LA N =i A

O

O
O
O
O
Q
°
.
o
.

Example: Gridworld

Gridworld:

Actions are ignored after reaching
A or B, from where the agent is
transferred to A' or B', resp.

e States: cell location in grid
e Actions: move north, south, east, west

e Rewards: -1if off-grid, +10/+5 if in A/B, 0 otherwise

Al |By 3.3(8.8) 4.4/(5.3)1.5

y A
+5 State-value function v.(s)

15/3.0(2.3/1.9/05 1
+0| B! <—I—> 0.1 0.7 0.7@-0.4 for policy 7(als) = 7 for all

1.0-04-04-08-12 @ with v = 0.9

Actions
Y ¢ 1.9(1.3-1.2-1.4}20

mherrman
Actions are ignored after reaching
A or B, from where the agent is transferred to A' or B', resp.

Example: Gridworld

Gridworld:

e States: cell location in grid

e Actions: move north, south, east, west
e Rewards: -1if off-grid, +10/+5 if in A/B, 0 otherwise

Al |By 22.0/24.4/22.0/19.4{17.5 — <—I—> — 4—}» —
+5 19.8/22.0/19.8|17.8|16.0 LR I i P

40| | B! 17.8[19.8|17.8/16.014.4 L P O D
16.0{17.8/16.0|14.4/13.0 [N t 1S P P}

AK 14.4(16.0{14.4/13.0{11.7 e o O

Optimal policy and
state-value function

Solving the Bellman Equation

Bellman equation for v, forms a system of n linear equations with n variables,
where n is number of states (for finite MDP):

Ve(s1) = Y m(als) Y p(s'srlsi, @) [r+4va(s')]
‘ i v (S) are variables
VW(SZ) = ZW(G|S2) Z p(slv I"Sz, CI) [I’ + ’YVW(S/)} 71—((]|5)Y p(s” r‘s7 a)’ r, and

7y are constants
Va(Sn) =Y _m(alsn) D p(s',rlsn,) [r + yva(s")]
a shr

e Value function v, is unique solution to system

e Solve for v, with any method to solve linear systems (e.g. Gauss elimination)

Solving the Bellman Optimality Equation

Bellman optimality equation for v, forms a system of n non-linear equations with n
variables

e Equations are non-linear due to max operator
e Optimal value function v, is unique solution to system

e Solve for v, with any method to solve non-linear equation systems
Can solve related set of equations for g, / g«

Once we have v, or g, we know optimal policy =, (why?)

Example: Recycling Robot

Solving for v, in recycling robot example (states: h/1, actions: s,w,re):

{ p(a[h, s)[r(h, s,h) + v, (b)] + p(1|h, s)[r(h, s, 1) +yu.(1)], }
p(a[h,w)[r(h,w,h) + v, (h)] + p(1|h, w)[r(h,w, 1) + yv.(1)]
_ max{ afrs +yv. ()] + (1 — a)[rs + yv.(1)], }
1[ra + 70+ ()] + 0w + 704 (1)]

_ max{ rs + 7w (b) + (1 — a)v. (1)), }
e + YUs(h) :

Brs = 3(1 = B) +7[(1 = B)va(h) + Bo.(1)],
v4(1) = max { e + Y0 (1), }

Yo« (h)

ve(h) =

Choose numbers for rg, ry, o, 3, and solve for unique v.(h) / v.(1) pair
20

Outlook

e Markov decision process is the fundamental model in RL

e MDPs can be solved exactly if we know all components of the MDP
(ie. S, A, R,p(s,r]a,s))
= But number of states/actions is problem for scalability

e We will discuss RL techniques which learn optimal policy by interacting with MDP

= Methods try to find good approximate solutions with reasonable effort

21

Required:
e RL book, Chapter 3 (31-3.7)

Optional:

e Dynamic Programming
by Richard Bellman (university library has copies)

e Markov Decision Processes: Discrete Stochastic Dynamic Programming
by Martin Puterman (university library has copies)

e Tsitsiklis, J., Van Roy, B. (2002). On Average Versus Discounted Reward
Temporal-Difference Learning. Machine Learning, 49, 179-191

22

[Extra/not examined] Ergodicity and Average Reward

For finite MDP and non-terminating episode, any policy 7 will produceétan ergodic

set of states S: *) if the resulting system is

PN . . aperiodic and recurrent
e Every state in S visited infinitely often

e Steady-state distribution: P(S) = limi—eo Pr{St =s | Ao, ...,At—1 ~ 7}

Performance of = can be measured by average reward:

r(r) = lim —ZE[RHSO,AO, A1 ~]

h—oo h

= 3" Pu(s) Yo n(als) Yop(s s,y [ndependent of
S a s'r

initial state Sg!

23

mherrman
*

mherrman
*) if the resulting system is aperiodic and recurrent

[Extra/not examined] Discounting and Average Reward

Maximising discounted return over steady-state dist. is same as maximising average
reward!

ng(s) ZP Z G|5;P(S'af&a)[H—Ww(S/)]
+ZP Z ias)zljp(s',r|s,a)hvw(s')]
F)+72Pw(5)v s
=r(m +7[f +vZP

= r(m) + yr(m) + f(ﬂ)+’y r(m) +--

=~ has no effect on maximisation!

24

[Extra/not examined] Discounting and Average Reward

We will focus on discounted return since:

e Most of current RL theory was developed for discounted return

e Discounted and average setting give same limit results for v — 1
= This is why most often people use v € [0.95,0.99]

e Discounted return works well for finite and infinite episodes

25

