
Reinforcement Learning
Markov Decision Processes

Stefano V. Albrecht, Michael Herrmann
23 January 2024

Lecture Outline

• Markov decision process
• Policies, goals, rewards, returns
• Value functions and Bellman equation
• Optimal value functions and policies

1

The Agent-Environment Interface

Agent

Environment

action

At

reward

Rt

state

St
Rt+1

St+1

Agent and environment interact at discrete time steps: t = 0, 1, 2, 3, ...
• Agent observes environment state at time t: St ∈ S
• and selects an action at step t: At ∈ A
• Environment sends back reward Rt+1 ∈ R and new state St+1 ∈ S

2

The Agent-Environment Interface

Agent

Environment

action

At

reward

Rt

state

St
Rt+1

St+1

At
Rt+1St At+1

Rt+2St+1 At+2

Rt+3St+2 At+3
St+3.

2

Markov Decision Process

Markov decision process (MDP) consists of:
• State space S
• Action space A
• Reward space R
• Environment dynamics:

p(s′, r|s,a) = Pr
{
St+1 = s′,Rt+1 = r | St = s,At = a

}
p(s′|s,a) = Pr

{
St+1 = s′ | St = s,At = a

}
=

∑
r∈R

p(s′, r|s,a)

r(s,a) = E[Rt+1 | St = s,At = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r|s,a)

3

MDP is finite if S , A, R are finite

Markov Property

Markov property:
Future state and reward are independent of past states and actions, given the
current state and action:

Pr{St+1,Rt+1 | St,At, St−1,At−1, ..., S0,A0} = Pr{St+1,Rt+1 | St,At}

• State St is sufficient summary of interaction history
⇒ Means optimal decision in St does not depend on past decisions

• Designing compact Markov states is “engineering work” in RL

4

Example: Recycling Robot

• Mobile robot must collect cans in office
• States:
– high battery level
– low battery level

• Actions:
– search for can
– wait for someone to bring can
– recharge battery at charging station

• Rewards: number of cans collected

5

Example: Recycling Robot

6

Example: Recycling Robot

7

Policy

MDP is controlled with a policy:

π(a|s) = probability of selecting action a when in state s

π(a|s) search wait recharge
high 0.9 0.1 0
low 0.2 0.3 0.5

Special case: deterministic policy π(s) = a

π(s)
high → search
low → recharge

8

Remark: MDP coupled with fixed
policy π is a “Markov chain”

See Tutorial 2 & 4

Goals and Rewards

Agent’s goal is to learn a policy that maximises cumulative reward

Reward hypothesis:
All goals can be described by the maximisation of the expected value of
cumulative scalar rewards.

Rewards specify what the goal is

• Rewards do not specify how to achieve goal
• But if done carefully, good reward design may help to learn faster
⇒ Like state design, reward design is “engineering work” in RL

9

Total Return

Formally, policy should maximise expected return:

Gt
.
= Rt+1 + Rt+2 + Rt+3 + ...+ RT

= Rt+1 + Gt+1

where T is final time step

Assumes terminating episodes:

• e.g. Chess game: terminates when one player wins
• e.g. Furniture building: terminates when furniture completed
• Can enforce termination by setting number of allowed time steps

10

Discounted Return

For non-terminating (infinite) episodes, can use discount rate γ ∈ [0, 1):

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+1+k

= Rt+1 + γGt+1

• e.g. Financial portfolio management
• e.g. Server monitoring and maintenance

• Definition also works for terminating episodes if terminal states are “absorbing”:
absorbing state always transitions into itself and gives reward 0

11

low γ is shortsighted
high γ is farsighted

Discounted Return

For non-terminating (infinite) episodes, can use discount rate γ ∈ [0, 1):

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+1+k

= Rt+1 + γGt+1

• Sum is finite for γ < 1 and bounded rewards Rt ≤ rmax :
∞∑
k=0

γkRt+1+k ≤ rmax

∞∑
k=0

γk = rmax
1

1− γ

• Definition also works for terminating episodes if terminal states are “absorbing”:
absorbing state always transitions into itself and gives reward 0

11

low γ is shortsighted
high γ is farsighted

Discounted Return

For non-terminating (infinite) episodes, can use discount rate γ ∈ [0, 1):

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+1+k

= Rt+1 + γGt+1

• Sum is finite for γ < 1 and bounded rewards Rt ≤ rmax :
∞∑
k=0

γkRt+1+k ≤ rmax

∞∑
k=0

γk = rmax
1

1− γ

• Definition also works for terminating episodes if terminal states are “absorbing”:
absorbing state always transitions into itself and gives reward 0

11

low γ is shortsighted
high γ is farsighted

State Value Function

Given policy π, can quantify expected return in any state s with state-value function:

vπ(s)
.
= Eπ[Gt|St = s] = Eπ

[
Rt+1 + γRt+2 + γ2Rt+3 + ... | St = s

]

In general, assuming terminating episodes (need more math for non-terminating
episodes), let H(s) be the set of all possible episodes starting in s:

H(s) .
=

{
h = (st,at, rt+1, st+1,at+1, rt+2, st+2, ..., rT, sT) | st = s

}
Each h ∈ H(s) has associated probability of occurring and cumulative reward:

Pr(h|π) =
T−1∏
τ=t

π(aτ |sτ)p(sτ+1, rτ+1|sτ ,aτ) and G(h) =
T∑

τ=t
γτ−t rτ

Then compute state value as vπ(s) =
∑

h∈H(s) Pr(h|π)G(h)

12

State Value Function

Given policy π, can quantify expected return in any state s with state-value function:

vπ(s)
.
= Eπ[Gt|St = s] = Eπ

[
Rt+1 + γRt+2 + γ2Rt+3 + ... | St = s

]
In general, assuming terminating episodes (need more math for non-terminating
episodes), let H(s) be the set of all possible episodes starting in s:

H(s) .
=

{
h = (st,at, rt+1, st+1,at+1, rt+2, st+2, ..., rT, sT) | st = s

}

Each h ∈ H(s) has associated probability of occurring and cumulative reward:

Pr(h|π) =
T−1∏
τ=t

π(aτ |sτ)p(sτ+1, rτ+1|sτ ,aτ) and G(h) =
T∑

τ=t
γτ−t rτ

Then compute state value as vπ(s) =
∑

h∈H(s) Pr(h|π)G(h)

12

State Value Function

Given policy π, can quantify expected return in any state s with state-value function:

vπ(s)
.
= Eπ[Gt|St = s] = Eπ

[
Rt+1 + γRt+2 + γ2Rt+3 + ... | St = s

]
In general, assuming terminating episodes (need more math for non-terminating
episodes), let H(s) be the set of all possible episodes starting in s:

H(s) .
=

{
h = (st,at, rt+1, st+1,at+1, rt+2, st+2, ..., rT, sT) | st = s

}
Each h ∈ H(s) has associated probability of occurring and cumulative reward:

Pr(h|π) =
T−1∏
τ=t

π(aτ |sτ)p(sτ+1, rτ+1|sτ ,aτ) and G(h) =
T∑

τ=t
γτ−t rτ

Then compute state value as vπ(s) =
∑

h∈H(s) Pr(h|π)G(h)

12

State Value Function

Given policy π, can quantify expected return in any state s with state-value function:

vπ(s)
.
= Eπ[Gt|St = s] = Eπ

[
Rt+1 + γRt+2 + γ2Rt+3 + ... | St = s

]
In general, assuming terminating episodes (need more math for non-terminating
episodes), let H(s) be the set of all possible episodes starting in s:

H(s) .
=

{
h = (st,at, rt+1, st+1,at+1, rt+2, st+2, ..., rT, sT) | st = s

}
Each h ∈ H(s) has associated probability of occurring and cumulative reward:

Pr(h|π) =
T−1∏
τ=t

π(aτ |sτ)p(sτ+1, rτ+1|sτ ,aτ) and G(h) =
T∑

τ=t
γτ−t rτ

Then compute state value as vπ(s) =
∑

h∈H(s) Pr(h|π)G(h) 12

State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

13

vπ(s)
.
= Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|a, s)
[
r+ γEπ

[
Gt+1|St+1 = s′

]]
=

∑
a

π(a|s)
∑
s′,r

p(s′, r|s,a)
[
r+ γvπ(s′)

]

Markov: past states/actions don’t
matter given current state

One-step look-ahead tree

State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

13

vπ(s)
.
= Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|a, s)
[
r+ γEπ

[
Gt+1|St+1 = s′

]]
=

∑
a

π(a|s)
∑
s′,r

p(s′, r|s,a)
[
r+ γvπ(s′)

]

Markov: past states/actions don’t
matter given current state

One-step look-ahead tree

State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

13

vπ(s)
.
= Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|a, s)
[
r+ γEπ

[
Gt+1|St+1 = s′

]]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s,a)
[
r+ γvπ(s′)

]

Markov: past states/actions don’t
matter given current state

One-step look-ahead tree

State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

13

vπ(s)
.
= Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|a, s)
[
r+ γEπ

[
Gt+1|St+1 = s′

]]
=

∑
a

π(a|s)
∑
s′,r

p(s′, r|s,a)
[
r+ γvπ(s′)

]

Markov: past states/actions don’t
matter given current state

One-step look-ahead tree

State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

13

vπ(s)
.
= Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|a, s)
[
r+ γEπ

[
Gt+1|St+1 = s′

]]
=

∑
a

π(a|s)
∑
s′,r

p(s′, r|s,a)
[
r+ γvπ(s′)

]

Markov: past states/actions don’t
matter given current state

One-step look-ahead tree

Action Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

vπ(s)
.
= Eπ[Gt|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s,a)
[
r+ γvπ(s′)

]

Can also define action-value function:

qπ(s,a)
.
= Eπ[Gt|St = s,At = a]

=
∑
s′,r

p(s′, r|s,a)
[
r+ γvπ(s′)

]

14

Action Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

vπ(s)
.
= Eπ[Gt|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s,a)
[
r+ γvπ(s′)

]

Can also define action-value function:

qπ(s,a)
.
= Eπ[Gt|St = s,At = a]

=
∑
s′,r

p(s′, r|s,a)
[
r+ γvπ(s′)

]
14

Optimal Value Functions and Policies

Policy π is optimal if

vπ(s) = v∗(s) = max
π′

vπ′(s)

qπ(s,a) = q∗(s,a) = max
π′

qπ′(s,a)

Because of the Bellman equation, this means that for any optimal policy π:

∀π̂ ∀s : vπ(s) ≥ vπ̂(s)

15

Optimal Value Functions and Policies

We can write optimal value function without reference to policy:

16

v∗(s) = max
a

∑
s′,r

p(s′, r|s,a)
[
r+ γ v∗(s′)

]
q∗(s,a) =

∑
s′,r

p(s′, r|s,a)
[
r+ γmax

a′
q∗(s′,a′)

] Bellman optimality
equations

Example: Gridworld

Gridworld:

• States: cell location in grid
• Actions: move north, south, east, west
• Rewards: -1 if off-grid, +10/+5 if in A/B, 0 otherwise

17

State-value function vπ(s)
for policy π(a|s) = 1

4 for all
s,a, with γ = 0.9

mherrman
Actions are ignored after reaching
A or B, from where the agent is transferred to A' or B', resp.

Example: Gridworld

Gridworld:

• States: cell location in grid
• Actions: move north, south, east, west
• Rewards: -1 if off-grid, +10/+5 if in A/B, 0 otherwise

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

A'

B'+10

+5

17

Optimal policy and
state-value function

Solving the Bellman Equation

Bellman equation for vπ forms a system of n linear equations with n variables,
where n is number of states (for finite MDP):

18

vπ(s1) =
∑
a

π(a|s1)
∑
s′,r

p(s′, r|s1,a)
[
r+ γvπ(s′)

]
vπ(s2) =

∑
a

π(a|s2)
∑
s′,r

p(s′, r|s2,a)
[
r+ γvπ(s′)

]
...

vπ(sn) =
∑
a

π(a|sn)
∑
s′,r

p(s′, r|sn,a)
[
r+ γvπ(s′)

]

vπ(s) are variables
π(a|s), p(s′, r|s,a), r, and
γ are constants

• Value function vπ is unique solution to system
• Solve for vπ with any method to solve linear systems (e.g. Gauss elimination)

Solving the Bellman Optimality Equation

Bellman optimality equation for v∗ forms a system of n non-linear equations with n
variables

• Equations are non-linear due to max operator
• Optimal value function v∗ is unique solution to system
• Solve for v∗ with any method to solve non-linear equation systems

Can solve related set of equations for qπ / q∗

Once we have v∗ or q∗, we know optimal policy π∗ (why?)

19

Example: Recycling Robot

Solving for v∗ in recycling robot example (states: h/l, actions: s,w,re):

20
Choose numbers for rs, rw, α, β, γ and solve for unique v∗(h) / v∗(l) pair

Outlook

• Markov decision process is the fundamental model in RL

• MDPs can be solved exactly if we know all components of the MDP
(i.e. S,A,R,p(s′, r|a, s))
⇒ But number of states/actions is problem for scalability

• We will discuss RL techniques which learn optimal policy by interacting with MDP
⇒ Methods try to find good approximate solutions with reasonable effort

21

Reading

Required:

• RL book, Chapter 3 (3.1–3.7)

Optional:

• Dynamic Programming
by Richard Bellman (university library has copies)

• Markov Decision Processes: Discrete Stochastic Dynamic Programming
by Martin Puterman (university library has copies)

• Tsitsiklis, J., Van Roy, B. (2002). On Average Versus Discounted Reward
Temporal-Difference Learning. Machine Learning, 49, 179–191

22

[Extra/not examined] Ergodicity and Average Reward

For finite MDP and non-terminating episode, any policy π will produce an ergodic
set of states Ŝ :
• Every state in Ŝ visited infinitely often
• Steady-state distribution: Pπ(s) = limt→∞ Pr{St = s | A0, ...,At−1 ∼ π}

Performance of π can be measured by average reward:

r(π) .
= lim

h→∞

1
h

h∑
t=1

E[Rt | S0,A0, ...,At−1 ∼ π]

=
∑
s
Pπ(s)

∑
a

π(a|s)
∑
s′,r

p(s′, r|s,a) r

23

Independent of
initial state S0!

mherrman
*

mherrman
*) if the resulting system is aperiodic and recurrent

[Extra/not examined] Discounting and Average Reward

Maximising discounted return over steady-state dist. is same as maximising average
reward!∑

s
Pπ(s) vπ(s) =

∑
s
Pπ(s)

∑
a

π(a|s)
∑
s′,r

p(s′, r|s,a)[r+ γvπ(s′)]

= r(π) +
∑
s
Pπ(s)

∑
a

π(a|s)
∑
s′,r

p(s′, r|s,a)[γvπ(s′)]

= r(π) + γ
∑
s′
Pπ(s′) vπ(s′)

= r(π) + γ [r(π) + γ
∑
s′
Pπ(s′) vπ(s′)]

= r(π) + γr(π) + γ2r(π) + γ3r(π) + · · ·

= r(π) 1
1− γ

⇒ γ has no effect on maximisation!
24

[Extra/not examined] Discounting and Average Reward

We will focus on discounted return since:

• Most of current RL theory was developed for discounted return

• Discounted and average setting give same limit results for γ → 1
⇒ This is why most often people use γ ∈ [0.95, 0.99]

• Discounted return works well for finite and infinite episodes

25

