
Reinforcement Learning
Dynamic Programming

Stefano V. Albrecht, Michael Herrmann
26 January 2024

Lecture Outline

• Policy iteration
• Iterative policy evaluation
• Policy improvement
• Value iteration
• Asynchronous and generalised DP

1

Recap: Markov Decision Process

Finite MDP consists of:

• Finite sets of states S , actions A, rewards R
• Environment dynamics p(s′, r|s,a)
• Optimal policy π∗ maximises expected return for all s ∈ S :

max
π

Eπ

[∞∑
k=0

γkRt+1+k | St = s
]

2

Agent

Environment

action

At

reward

Rt

state

St
Rt+1

St+1

Dynamic Programming

Dynamic programming (DP) is a family of algorithms to compute optimal policy

DP algorithms use Bellman equations as operators:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s,a)
[
r+ γvπ(s′)

]
qπ(s,a) =

∑
s′,r

p(s′, r|s,a)
[
r+ γvπ(s′)

]

⇒ Assumes knowledge of all components of MDP (S,A,R,p(s′, r|s,a))

3

Policy Iteration

The basic DP algorithm is policy iteration which alternates between two phases:

• Policy evaluation: compute vπ for current policy π
• Policy improvement: make policy π greedy wrt vπ

Process converges to optimal policy π∗

4

Generalised Policy Iteration

DP methods can perform policy evaluation
and improvement at different granularity:
• full sweeps > single sweep > single states

5

Policy Evaluation

Recall: Bellman equation for vπ is system of linear equations

vπ(s1) =
∑
a

π(a|s1)
∑
s′,r

p(s′, r|s1,a)
[
r+ γvπ(s′)

]
vπ(s2) =

∑
a

π(a|s2)
∑
s′,r

p(s′, r|s2,a)
[
r+ γvπ(s′)

]
...

vπ(sn) =
∑
a

π(a|sn)
∑
s′,r

p(s′, r|sn,a)
[
r+ γvπ(s′)

]
Could use this for policy evaluation step, but expensive

• Gauss elimination (de facto standard) has time complexity O(n3)

6

Iterative Policy Evaluation

We can use Bellman equation as operator to iteratively compute vπ :

• Initialise v0(s) = 0
• Then perform updates vk → vk+1 for k = 0, 1, 2, ...:

vk+1(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s,a)
[
r+ γvk(s′)

]
for all s ∈ S

• Sequence converges to fixed point vπ , so stop when no more changes to vk

Updating estimates based on other estimates is called bootstrapping

7

Iterative Policy Evaluation

8

Example: Gridworld

• States: cell location in grid; grey squares are terminal
• Actions: move north, south, east, west
• Rewards: -1 until terminal state reached (recall: absorbing state, reward 0)
• Undiscounted: γ = 1

9

Example: Gridworld

Evaluating the uniform random policy: π(a|s) = 0.25 for all s,a

10

[Extra] Iterative Policy Evaluation – Convergence Proof (1/3)

Why does the sequence v0 → v1 → v2 → · · · converge to vπ?
⇒ Because Bellman operator is a contraction mapping

Contraction Mapping
Operator f on || · ||–normed vector space X is a γ-contraction, for γ ∈ [0, 1), if for all
x, y ∈ X :

||f(x)− f(y)|| ≤ γ ||x− y||

• Banach fixed-point theorem: repeated application of f converges to a unique fixed
point in X (if X complete)

11

[Extra] Iterative Policy Evaluation – Convergence Proof (2/3)

Rewrite Bellman equation:

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s,a)
[
r+ γvπ(s′)

]

=
∑
a,s′,r

π(a|s)p(s′, r|s,a) r+
∑
a,s′,r

π(a|s)p(s′, r|s,a) γvπ(s′)

As operator over vector v :
fπ(v) = rπ + γTπv

where rπs =
∑

a,s′,r π(a|s)p(s′, r|s,a) r and Tπs,s′ =
∑

a,r π(a|s)p(s′, r|s,a)

12

[Extra] Iterative Policy Evaluation – Convergence Proof (3/3)

Consider the max-norm:
||x||∞ = max

i
|xi|

Bellman operator is a γ-contraction under max-norm:

||fπ(v)− fπ(u)||∞ = ||(rπ + γTπv)− (rπ + γTπu)||∞

= γ||Tπ(v− u)||∞

≤ γ||v− u||∞

• Thus, Bellman operator converges to a unique fixed point
• By definition, vπ is fixed point of Bellman equation: vπ = fπ(vπ)
⇒ Hence, Bellman operator converges to vπ

13

(Why?)

Policy Improvement

Once we have vπ , we improve π by making it greedy wrt vk:

π′(s) .
= argmax

a
qπ(s,a)

= argmax
a

∑
s′,r

p(s′, r|s,a)
[
r+ γvπ(s′)

]
For all s ∈ S .

This works because of...

14

Policy Improvement Theorem

Policy Improvement Theorem
Let π and π′ be policies such that for all s:∑

a
π′(a|s)qπ(s,a) ≥

∑
a

π(a|s)qπ(s,a)

= vπ(s)

Then π′ must be as good as or better than π:

∀s : vπ′(s) ≥ vπ(s)

15

Policy Improvement Theorem – Proof Sketch

vπ(s) ≤ qπ(s, π′(s)) (here for deterministic policies)

= E
[
Rt+1 + γvπ(St+1) | St = s,At = π′(s)

]
= Eπ′[Rt+1 + γvπ(St+1) | St = s]

≤ Eπ′
[
Rt+1 + γqπ(St+1, π′(St+1)) | St = s

]
(by premise)

= Eπ′
[
Rt+1 + γEπ′

[
Rt+2 + γvπ(St+2) | St+1,At+1 = π′(St+1)

]
| St = s

]
= Eπ′

[
Rt+1 + γRt+2 + γ2vπ(St+2) | St = s

]
≤ Eπ′

[
Rt+1 + γRt+2 + γ2Rt+3 + γ3vπ(St+3) | St = s

]
. . .

≤ Eπ′
[
Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + ... | St = s

]
= vπ′(s)

16

Policy Improvement

What if greedy policy π′ has not changed from π after policy improvement?

Then vπ′ = vπ (why?) and it follows for all s ∈ S :

vπ′(s) = max
a

E[Rt+1 + γvπ(St+1) | St = s,At = a] (by greedy construction)

= max
a

E[Rt+1 + γvπ′(St+1) | St = s,At = a] (vπ′ = vπ)

= max
a

∑
s′,r

p(s′, r | s,a)
[
r+ γvπ′(s′)

]
= v∗(s)

17

⇒ π′ (and π) is optimal and policy iteration is complete!

Policy Improvement

What if greedy policy π′ has not changed from π after policy improvement?

Then vπ′ = vπ (why?) and it follows for all s ∈ S :

vπ′(s) = max
a

E[Rt+1 + γvπ(St+1) | St = s,At = a] (by greedy construction)

= max
a

E[Rt+1 + γvπ′(St+1) | St = s,At = a] (vπ′ = vπ)

= max
a

∑
s′,r

p(s′, r | s,a)
[
r+ γvπ′(s′)

]
= v∗(s)

17

⇒ π′ (and π) is optimal and policy iteration is complete!

Policy Iteration

18

See Tutorial 3 & 5

Example: Jack’s Car Rental

• Two car rental locations

• Cars are requested and returned randomly based on a distribution (see book)

• States: (n1,n2) — ni is number of cars at location i (max 20 each)

• Actions: number of cars moved from one location to other (max 5)
(positive is from location 1 to 2, negative is from 2 to 1)

• Rewards:
+$10 per rented car in time step
−$2 per moved car in time step

• γ = 0.9

19

Example: Jack’s Car Rental

20

Value Iteration

Iterative policy evaluation may
take many sweeps vk → vk+1 to
converge

Do we have to wait until
convergence before policy
improvement?

4.2. Policy Improvement 77

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
 for the

random policy
vk greedy policy

 w.r.t. vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.

21

Value Iteration

Iterative policy evaluation uses Bellman equation as operator:

vk+1(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s,a)
[
r+ γvk(s′)

]
for all s ∈ S

Value iteration uses Bellman optimality equation as operator:

vk+1(s) = max
a

∑
s′,r

p(s′, r|s,a)
[
r+ γvk(s′)

]
for all s ∈ S

• Combines one sweep of iterative policy evaluation and policy improvement
• Sequence converges to optimal policy
(can show that Bellman optimality operator is γ-contraction)

22

Value Iteration

23

Asynchronous Dynamic Programming

DP methods so far perform exhaustive sweeps:

Policy evaluation and improvement for all s ∈ S ⇒ prohibitive if state space large!

Asynchronous DP methods evaluate and improve policy on subset of states:

• Gives flexibility to choose best states to update
⇒ e.g. random states, recently visited states (real-time DP)

• Can perform updates in parallel on multiple processors

• Still guaranteed to converge to optimal policy if all states in S are updated
infinitely many times in the limit

24

Reading

Required:

• RL book, Chapter 4 (4.1–4.7)
(Iterative Policy Evaluation proof from slides not examined)

Optional:

• Dynamic Programming and Optimal Control
by Dimitri P. Bertsekas
http://www.athenasc.com/dpbook.html
Search on Google ...

25

http://www.athenasc.com/dpbook.html

