
Reinforcement Learning
Monte Carlo Methods

Stefano V. Albrecht, Michael Herrmann
30 January 2024

Lecture Outline

• Monte Carlo policy evaluation
• Monte Carlo control with...

• Exploring starts
• Soft policies
• Off-policy learning

1

Recap: Generalised Policy Iteration

DP methods iterate through policy evaluation and
improvement until convergence to optimal value
function v∗ and policy π∗
• Policy evaluation via repeated application of
Bellman operator

• Requires complete knowledge of MDP model:
p(s′, r|s,a)

Can we compute optimal policy without
knowledge of complete model?

2

Monte Carlo Policy Evaluation

Monte Carlo (MC) methods learn value function based on experience

• Experience: entire episodes Ei = < Si0,Ai0,Ri1, Si1,Ai1,Ri2, ..., SiTi >

MC does not require complete model p(s′, r|s,a), only requires sampled episodes

Two ways to obtain episodes:

• Real experience: generate episodes directly from “real world”
• Simulated experience: use simulation model p̂ to sample episodes
— p̂(s,a) returns a pair (s′, r) with probability p(s′, r|s,a)

3

Monte Carlo Policy Evaluation

Monte Carlo (MC) Policy Evaluation:
• Estimate value function by averaging sample returns:

vπ(s)
.
= Eπ

[T−1∑
k=t

γk−tRk+1|St = s
]

≈ 1
|E(s)|

∑
ti ∈E(s)

Ti−1∑
k=ti

γk−ti Rik+1

where for each past episode Ei = < Si0,Ai0,Ri1, Si1,Ai1,Ri2, ..., SiTi >:

— First-visit MC: E(s) contains first time ti for which Siti = s in Ei

— Every-visit MC: E(s) contains all times ti for which Siti = s in Ei

• Both methods converge to vπ(s) as |E(s)| → ∞

4

First-Visit Monte Carlo Policy Evaluation

5

See Tutorial 5

Example: Blackjack

6

Ace worth 1
or 11

Hidden card

Example: Blackjack

7

Estimate of vπ using MC ...

Player policy π:
stick if player sum is
20 or 21, else hit

States s (3-tuple):
– Player sum (12–21)
– Dealer card (ace–10)
– Usable ace?

Example: Blackjack

7

Estimate of vπ using MC ...

Player policy π:
stick if player sum is
20 or 21, else hit

States s (3-tuple):
– Player sum (12–21)
– Dealer card (ace–10)
– Usable ace?

States in Blackjack

Couldn’t we just define states as St = {Player cards, Dealer card}?

• Tricky: states would have variable length (player cards)
• If we fix maximum number of player cards to 4, then there are 105 = 100, 000
possible states! (ignoring face cards and ordering)

Blackjack example uses engineered state features:

• Fixed length: St = (Player sum, Dealer card, Usable ace?)
• Player sum limited to range 12–21 because decision below 12 is trivial (always hit)
• Number of states: 10 ∗ 10 ∗ 2 = 200→ much smaller problem!
• Still has all relevant information

8

States in Blackjack

Couldn’t we just define states as St = {Player cards, Dealer card}?

• Tricky: states would have variable length (player cards)
• If we fix maximum number of player cards to 4, then there are 105 = 100, 000
possible states! (ignoring face cards and ordering)

Blackjack example uses engineered state features:

• Fixed length: St = (Player sum, Dealer card, Usable ace?)
• Player sum limited to range 12–21 because decision below 12 is trivial (always hit)
• Number of states: 10 ∗ 10 ∗ 2 = 200→ much smaller problem!
• Still has all relevant information

8

Blackjack and Dynamic Programming

Can we solve Blackjack MDP with DP methods?

• Yes, in principle, because we know complete MDP

• But computing p(s′, r|s,a) can be complicated!
E.g. what is probability of +1 reward as function of Dealer’s showing card?

• On other hand, easy to code a simulation model:
— Use Dealer rule to sample cards until stick/bust, then compute reward
— Reward outcome is distributed by p(s′, r|s,a)

• MC can evaluate policy without knowledge of probabilities p(s′, r|s,a)

9

Blackjack and Dynamic Programming

Can we solve Blackjack MDP with DP methods?

• Yes, in principle, because we know complete MDP

• But computing p(s′, r|s,a) can be complicated!
E.g. what is probability of +1 reward as function of Dealer’s showing card?

• On other hand, easy to code a simulation model:
— Use Dealer rule to sample cards until stick/bust, then compute reward
— Reward outcome is distributed by p(s′, r|s,a)

• MC can evaluate policy without knowledge of probabilities p(s′, r|s,a)

9

Monte Carlo Estimation of Action Values

MC methods can learn vπ without knowledge of model p(s′, r|s,a)
⇒ But improving policy π from vπ requires model (why?)

Must estimate action values:

qπ(s,a)
.
= Eπ[Gt|St = s,At = a]

• Improve policy without model: π′(s) = argmaxa qπ(s,a)
• Use same MC methods to learn qπ , but visits are to (s,a)-pairs
• Converges to qπ if every (s,a)-pair visited infinitely many times in limit

E.g. exploring starts: every (s,a)-pair has non-zero probability
of being starting pair of episode

10

Monte Carlo Estimation of Action Values

MC methods can learn vπ without knowledge of model p(s′, r|s,a)
⇒ But improving policy π from vπ requires model (why?)

Must estimate action values:

qπ(s,a)
.
= Eπ[Gt|St = s,At = a]

• Improve policy without model: π′(s) = argmaxa qπ(s,a)
• Use same MC methods to learn qπ , but visits are to (s,a)-pairs
• Converges to qπ if every (s,a)-pair visited infinitely many times in limit

E.g. exploring starts: every (s,a)-pair has non-zero probability
of being starting pair of episode

10

Monte Carlo Control

• MC policy evaluation:
Estimate qπ using MC method

• Policy improvement:
Improve π by making greedy wrt qπ

11

Monte Carlo Control with Exploring Starts

Greedy policy meets conditions for policy
improvement theorem:

qπk(s, πk+1(s)) = qπk(s, argmax
a
qπk(s,a))

= max
a
qπk(s,a)

≥ qπk(s, πk(s)) (why?)
= vπk(s)

Assumes exploring starts and infinite MC iterations
• In practice, we update only to a given performance threshold
• Or alternate between evaluation and improvement per episode

12

Monte Carlo Control with Exploring Starts

13

Blackjack Example with MC–ES

Policy π:
stick if player sum
is 20 or 21, else hit

Exploring starts:
sample initial states
uniformly randomly

14

Monte Carlo Control with Soft Policies

Convergence to qπ requires that all (s,a)-pairs are visited infinitely many times

• Exploring starts guarantee this, but impractical (why?)

Other approach: use soft policy such that π(a|s) > 0 for all s,a

• e.g. ϵ-soft policy: π(a|s) ≥ ϵ/|A| for ϵ > 0
• Policy improvement: make policy ϵ-greedy wrt qπ

π′(a|s) .
=

{
ϵ/|A|+ (1− ϵ) if a = argmaxa′ qπ(s,a′)

ϵ/|A| else

15

Monte Carlo Control with Soft Policies

Convergence to qπ requires that all (s,a)-pairs are visited infinitely many times

• Exploring starts guarantee this, but impractical (why?)

Other approach: use soft policy such that π(a|s) > 0 for all s,a

• e.g. ϵ-soft policy: π(a|s) ≥ ϵ/|A| for ϵ > 0
• Policy improvement: make policy ϵ-greedy wrt qπ

π′(a|s) .
=

{
ϵ/|A|+ (1− ϵ) if a = argmaxa′ qπ(s,a′)

ϵ/|A| else

15

Monte Carlo Control with Soft Policies

ϵ-greedy policy meets conditions for policy improvement theorem:

qπ(s, π′(s)) =
∑
a

π′(a|s)qπ(s,a)

=
ϵ

|A|
∑
a
qπ(s,a) + (1− ϵ)max

a
qπ(s,a)

≥ ϵ

|A|
∑
a
qπ(s,a) + (1− ϵ)

∑
a

π(a|s)− ϵ/|A|
1− ϵ

qπ(s,a) (why?)

=
ϵ

|A|
∑
a
qπ(s,a)−

ϵ

|A|
∑
a
qπ(s,a) +

∑
a

π(a|s)qπ(s,a)

= vπ(s)

• Thus, π′ better or equal to π, but both are still ϵ-soft
• qπ(s, π′(s)) = vπ(s) only when π′ and π both optimal ϵ-soft policies

16

Monte Carlo Control with Soft Policies

17

Off-Policy Methods

Like exploring starts, soft policies ensure all (s,a) are visited infinitely many times

• But policies restricted to be soft
⇒ Optimal policy is usually deterministic!

• Could slowly reduce ϵ, but not clear how fast

Other approach: off-policy learning

• Learn qπ based on experience generated with behaviour policy µ ̸= π

• Requires “coverage”: if π(a|s) > 0 then µ(a|s) > 0, for all s,a
— e.g. use soft policy µ

• π can be deterministic→ usually the greedy policy

18

Off-Policy Methods

Like exploring starts, soft policies ensure all (s,a) are visited infinitely many times

• But policies restricted to be soft
⇒ Optimal policy is usually deterministic!

• Could slowly reduce ϵ, but not clear how fast

Other approach: off-policy learning

• Learn qπ based on experience generated with behaviour policy µ ̸= π

• Requires “coverage”: if π(a|s) > 0 then µ(a|s) > 0, for all s,a
— e.g. use soft policy µ

• π can be deterministic→ usually the greedy policy

18

Discussion: On-Policy vs Off-Policy Methods

On-policy:

Learn qπ with experience
generated using policy π

Off-policy:

Learn qπ with experience
generated using policy µ ̸= π

19

Importance Sampling Ratio

We have episodes generated from µ

⇒ Expected return at t is Eµ[Gt|St = s] = vµ(s)

Fix expectation with sampling importance ratio:

ρt:T
.
=

∏T−1
k=t π(Ak|Sk)p(Sk+1,Rk+1|Sk,Ak)∏T−1
k=t µ(Ak|Sk)p(Sk+1,Rk+1|Sk,Ak)

=
T−1∏
k=t

π(Ak|Sk)
µ(Ak|Sk)

• Eµ[ρt:T Gt|St = s] = vπ(s)

20

Importance Sampling Ratio

We have episodes generated from µ

⇒ Expected return at t is Eµ[Gt|St = s] = vµ(s)

Fix expectation with sampling importance ratio:

ρt:T
.
=

∏T−1
k=t π(Ak|Sk)p(Sk+1,Rk+1|Sk,Ak)∏T−1
k=t µ(Ak|Sk)p(Sk+1,Rk+1|Sk,Ak)

=
T−1∏
k=t

π(Ak|Sk)
µ(Ak|Sk)

• Eµ[ρt:T Gt|St = s] = vπ(s)

20

Importance Sampling Ratio

Eµ[ρt:T Gt|St = s] =
∑
E:St=s

[T−1∏
k=t

µ(Ak|Sk)p(Sk+1,Rk+1|Sk,Ak)
]
ρt:T Gt

=
∑
E:St=s

[T−1∏
k=t

µ(Ak|Sk)p(Sk+1,Rk+1|Sk,Ak)
] T−1∏
k=t

π(Ak|Sk)
µ(Ak|Sk)

Gt

=
∑
E:St=s

[T−1∏
k=t

π(Ak|Sk)p(Sk+1,Rk+1|Sk,Ak)
]
Gt

= vπ(s)

21

Evaluating Policies with Importance Sampling

Denote episodes Ei = < Si0,Ai0,Ri1, Si1,Ai1,Ri2, ..., SiTi >

Define E(s)/E(s,a) as before for first-visit or every-visit MC

Estimate vπ/qπ as

vπ(s) ≈ η−1
∑

ti ∈E(s)
ρti:Ti G

i
ti

qπ(s,a) ≈ η−1
∑

ti ∈E(s,a)
ρti+1:Ti G

i
ti (why ti + 1?)

• Ordinary importance sampling: η = |E(s,a)|
• Weighted importance sampling: η =

∑
ti∈E(s) ρti:Ti resp. η =

∑
ti∈E(s,a) ρti+1:Ti

22

Off-Policy Value Estimation in Blackjack Example

π : stick if player sum is
20 or 21, else hit

µ : uniformly random

s : player sum 13
dealer showing 2
usable ace

True value:
vπ(s) ≈ −0.27726

23

Reading

Required:

• RL book, Chapter 5 (5.1–5.7)

Optional:

• Sequential Monte Carlo Methods in Practice
Arnaud Doucet, Nando de Freitas, Neil Gordon (editors)
University library has copies

24

