Reinforcement Learning

Monte Carlo Methods

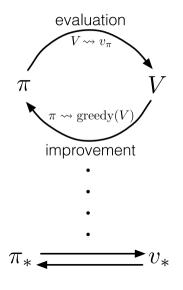
Stefano V. Albrecht, Michael Herrmann 30 January 2024

- Monte Carlo policy evaluation
- Monte Carlo control with...
 - Exploring starts
 - Soft policies
 - Off-policy learning

DP methods iterate through policy evaluation and improvement until convergence to optimal value function v_* and policy π_*

- Policy evaluation via repeated application of Bellman operator
- Requires complete knowledge of MDP model: p(s', r|s, a)

Can we compute optimal policy without knowledge of complete model?



Monte Carlo (MC) methods learn value function based on experience

• Experience: entire episodes $E^i = \langle S_0^i, A_0^i, R_1^i, S_1^i, A_1^i, R_2^i, ..., S_{T_i}^i \rangle$

MC does not require complete model p(s', r|s, a), only requires sampled episodes

Two ways to obtain episodes:

- Real experience: generate episodes directly from "real world"
- Simulated experience: use simulation model \hat{p} to sample episodes
 - $-\hat{p}(s, a)$ returns a pair (s', r) with probability p(s', r|s, a)

Monte Carlo Policy Evaluation

Monte Carlo (MC) Policy Evaluation:

• Estimate value function by averaging sample returns:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}\left[\sum_{k=t}^{T-1} \gamma^{k-t} R_{k+1} | S_t = s\right] \approx \frac{1}{|\mathcal{E}(s)|} \sum_{t_i \in \mathcal{E}(s)} \sum_{k=t_i}^{T_i-1} \gamma^{k-t_i} R_{k+1}^i$$

where for each past episode $E^{i} = \langle S_{0}^{i}, A_{0}^{i}, R_{1}^{i}, S_{1}^{i}, A_{1}^{i}, R_{2}^{i}, ..., S_{T_{i}}^{i} \rangle$:

- **First-visit MC:** $\mathcal{E}(s)$ contains first time t_i for which $S_{t_i}^i = s$ in E^i
- Every-visit MC: $\mathcal{E}(s)$ contains all times t_i for which $S_{t_i}^i = s$ in E^i
- Both methods converge to $v_{\pi}(s)$ as $|\mathcal{E}(s)| \to \infty$

First-Visit Monte Carlo Policy Evaluation

See Tutorial 5

Initialize:

 $\begin{aligned} \pi &\leftarrow \text{policy to be evaluated} \\ V &\leftarrow \text{ an arbitrary state-value function} \\ Returns(s) &\leftarrow \text{ an empty list, for all } s \in \mathbb{S} \end{aligned}$

Repeat forever:

Generate an episode using π For each state *s* appearing in the episode: $G \leftarrow$ return following the first occurrence of *s* Append *G* to Returns(s) $V(s) \leftarrow$ average(Returns(s))

First, player samples cards from deck (hit) until stop (stick) Then, dealer samples cards from deck (hit) until sum > 16 (stick)

Player loses (-1 reward) if bust (card sum > 21) Player wins (+1 reward) if Dealer bust or Player sum > Dealer sum

Player policy π :

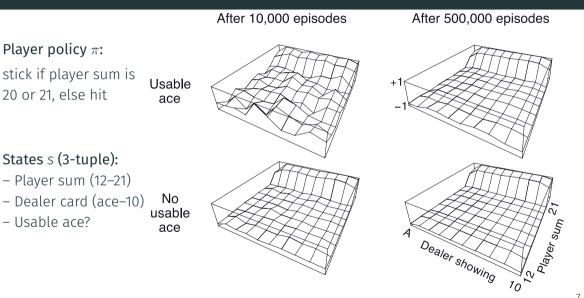
stick if player sum is 20 or 21, else hit

Estimate of v_{π} using MC ...

States s (3-tuple):

- Player sum (12–21)
- Dealer card (ace-10)
- Usable ace?

Example: Blackjack



Couldn't we just define states as $S_t = \{ Player cards, Dealer card \}$?

- Tricky: states would have variable length (player cards)
- If we fix maximum number of player cards to 4, then there are $10^5 = 100,000$ possible states! (ignoring face cards and ordering)

Couldn't we just define states as $S_t = \{ Player cards, Dealer card \}$?

- Tricky: states would have variable length (player cards)
- If we fix maximum number of player cards to 4, then there are $10^5 = 100,000$ possible states! (ignoring face cards and ordering)

Blackjack example uses engineered state features:

- Fixed length: $S_t = (Player sum, Dealer card, Usable ace?)$
- Player sum limited to range 12–21 because decision below 12 is trivial (always hit)
- Number of states: $10 * 10 * 2 = 200 \rightarrow much smaller problem!$
- Still has all relevant information

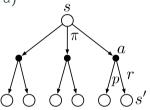
Can we solve Blackjack MDP with DP methods?

- Yes, in principle, because we know complete MDP
- But computing p(s', r|s, a) can be complicated!
 E.g. what is probability of +1 reward as function of Dealer's showing card?

Can we solve Blackjack MDP with DP methods?

- Yes, in principle, because we know complete MDP
- But computing p(s', r|s, a) can be complicated!
 E.g. what is probability of +1 reward as function of Dealer's showing card?
- On other hand, easy to code a simulation model:
 - Use Dealer rule to sample cards until stick/bust, then compute reward
 - Reward outcome is distributed by p(s', r|s, a)
- MC can evaluate policy without knowledge of probabilities p(s', r|s, a)

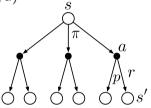
MC methods can learn v_{π} without knowledge of model p(s', r|s, a) \Rightarrow But improving policy π from v_{π} requires model (why?)



MC methods can learn v_{π} without knowledge of model p(s', r|s, a) \Rightarrow But improving policy π from v_{π} requires model (*why*?)

Must estimate action values:

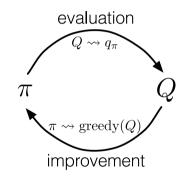
$$q_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$$



- Improve policy without model: $\pi'(s) = \arg \max_a q_{\pi}(s, a)$
- Use same MC methods to learn q_{π} , but visits are to (s, a)-pairs
- Converges to q_{π} if every (s, a)-pair visited infinitely many times in limit

E.g. exploring starts: every (*s*, *a*)-pair has non-zero probability of being starting pair of episode

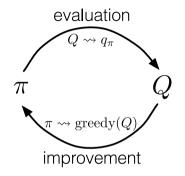
- MC policy evaluation: Estimate q_{π} using MC method
- Policy improvement: Improve π by making greedy wrt q_{π}



Monte Carlo Control with Exploring Starts

Greedy policy meets conditions for policy improvement theorem:

$$\begin{aligned} q_{\pi_k}(s, \pi_{k+1}(s)) &= q_{\pi_k}(s, \arg\max_a q_{\pi_k}(s, a)) \\ &= \max_a q_{\pi_k}(s, a) \\ &\geq q_{\pi_k}(s, \pi_k(s)) \quad (why?) \\ &= v_{\pi_k}(s) \end{aligned}$$



Assumes exploring starts and *infinite* MC iterations

- In practice, we update only to a given performance threshold
- Or alternate between evaluation and improvement per episode

Monte Carlo Control with Exploring Starts

```
Initialize, for all s \in S, a \in \mathcal{A}(s):

Q(s, a) \leftarrow \text{arbitrary}

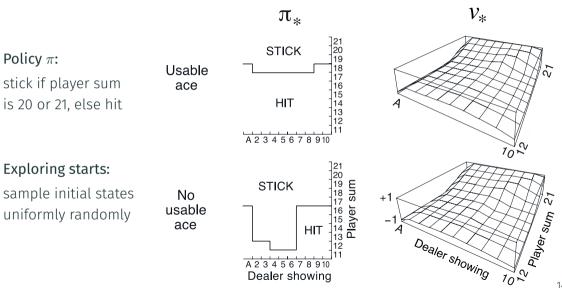
\pi(s) \leftarrow \text{arbitrary}

Returns(s, a) \leftarrow \text{empty list}
```

Repeat forever:

Choose $S_0 \in S$ and $A_0 \in \mathcal{A}(S_0)$ s.t. all pairs have probability > 0 Generate an episode starting from S_0, A_0 , following π For each pair s, a appearing in the episode: $G \leftarrow$ return following the first occurrence of s, aAppend G to Returns(s, a) $Q(s, a) \leftarrow$ average(Returns(s, a)) For each s in the episode: $\pi(s) \leftarrow$ argmax_c Q(s, a)

Blackjack Example with MC-ES



Convergence to q_{π} requires that all (s, a)-pairs are visited infinitely many times

• Exploring starts guarantee this, but impractical (why?)

Convergence to q_{π} requires that all (s, a)-pairs are visited infinitely many times

• Exploring starts guarantee this, but impractical (why?)

Other approach: use soft policy such that $\pi(a|s) > 0$ for all s, a

- e.g. ϵ -soft policy: $\pi(a|s) \ge \epsilon/|\mathcal{A}|$ for $\epsilon > 0$
- **Policy improvement:** make policy ϵ -greedy wrt q_{π}

$$\pi'(a|s) \doteq \begin{cases} \epsilon/|\mathcal{A}| + (1-\epsilon) & \text{if } a = \arg \max_{a'} q_{\pi}(s, a') \\ \epsilon/|\mathcal{A}| & \text{else} \end{cases}$$

 ϵ -greedy policy meets conditions for policy improvement theorem:

$$q_{\pi}(s,\pi'(s)) = \sum_{a} \pi'(a|s) q_{\pi}(s,a)$$

$$= \frac{\epsilon}{|\mathcal{A}|} \sum_{a} q_{\pi}(s,a) + (1-\epsilon) \max_{a} q_{\pi}(s,a)$$

$$\geq \frac{\epsilon}{|\mathcal{A}|} \sum_{a} q_{\pi}(s,a) + (1-\epsilon) \sum_{a} \frac{\pi(a|s) - \epsilon/|\mathcal{A}|}{1-\epsilon} q_{\pi}(s,a) \quad (why?)$$

$$= \frac{\epsilon}{|\mathcal{A}|} \sum_{a} q_{\pi}(s,a) - \frac{\epsilon}{|\mathcal{A}|} \sum_{a} q_{\pi}(s,a) + \sum_{a} \pi(a|s) q_{\pi}(s,a)$$

$$= v_{\pi}(s)$$

- Thus, π' better or equal to π , but both are still ϵ -soft
- $q_{\pi}(s, \pi'(s)) = v_{\pi}(s)$ only when π' and π both optimal ϵ -soft policies

Monte Carlo Control with Soft Policies

Initialize, for all $s \in S$, $a \in \mathcal{A}(s)$: $Q(s, a) \leftarrow \text{arbitrary}$ $Returns(s, a) \leftarrow \text{empty list}$ $\pi(a|s) \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}$

Repeat forever:

(a) Generate an episode using π (b) For each pair s, a appearing in the episode: $G \leftarrow$ return following the first occurrence of s, a Append G to Returns(s, a) $Q(s, a) \leftarrow \operatorname{average}(Returns(s, a))$ (c) For each s in the episode: $A^* \leftarrow \arg \max_a Q(s, a)$ For all $a \in \mathcal{A}(s)$: $\pi(a|s) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(s)| & \text{if } a \neq A^* \end{cases}$

Like exploring starts, soft policies ensure all (s, a) are visited infinitely many times

- But policies restricted to be soft
 - \Rightarrow Optimal policy is usually deterministic!
- Could slowly reduce $\epsilon_{\rm r}$ but not clear how fast

Like exploring starts, soft policies ensure all (s, a) are visited infinitely many times

- But policies restricted to be soft
 - \Rightarrow Optimal policy is usually deterministic!
- Could slowly reduce $\epsilon,$ but not clear how fast

Other approach: off-policy learning

- Learn q_{π} based on experience generated with *behaviour policy* $\mu \neq \pi$
- Requires "coverage": if $\pi(a|s) > 0$ then $\mu(a|s) > 0$, for all s, a
 - e.g. use soft policy μ
- π can be deterministic \rightarrow usually the greedy policy

On-policy:

Learn q_{π} with experience generated using policy π

Off-policy:

Learn q_{π} with experience generated using policy $\mu \neq \pi$

We have episodes generated from μ

 \Rightarrow Expected return at t is $\mathbb{E}_{\mu}[G_t|S_t = s] = v_{\mu}(s)$

We have episodes generated from $\boldsymbol{\mu}$

 \Rightarrow Expected return at t is $\mathbb{E}_{\mu}[G_t|S_t = s] = v_{\mu}(s)$

Fix expectation with sampling importance ratio:

$$\rho_{t:T} \doteq \frac{\prod_{k=t}^{T-1} \pi(A_k|S_k) p(S_{k+1}, R_{k+1}|S_k, A_k)}{\prod_{k=t}^{T-1} \mu(A_k|S_k) p(S_{k+1}, R_{k+1}|S_k, A_k)} = \prod_{k=t}^{T-1} \frac{\pi(A_k|S_k)}{\mu(A_k|S_k)}$$

• $\mathbb{E}_{\mu}[\rho_{t:T} G_t | S_t = S] = V_{\pi}(S)$

Importance Sampling Ratio

$$\mathbb{E}_{\mu}[\rho_{t:T} G_{t}|S_{t} = s] = \sum_{E:S_{t}=s} \left[\prod_{k=t}^{T-1} \mu(A_{k}|S_{k}) p(S_{k+1}, R_{k+1}|S_{k}, A_{k}) \right] \rho_{t:T} G_{t}$$

$$= \sum_{E:S_{t}=s} \left[\prod_{k=t}^{T-1} \mu(A_{k}|S_{k}) p(S_{k+1}, R_{k+1}|S_{k}, A_{k}) \right] \prod_{k=t}^{T-1} \frac{\pi(A_{k}|S_{k})}{\mu(A_{k}|S_{k})} G_{t}$$

$$= \sum_{E:S_{t}=s} \left[\prod_{k=t}^{T-1} \pi(A_{k}|S_{k}) p(S_{k+1}, R_{k+1}|S_{k}, A_{k}) \right] G_{t}$$

$$= v_{\pi}(s)$$

Evaluating Policies with Importance Sampling

Denote episodes $E^{i} = \langle S_{0}^{i}, A_{0}^{i}, R_{1}^{i}, S_{1}^{i}, A_{1}^{i}, R_{2}^{i}, ..., S_{T_{i}}^{i} \rangle$

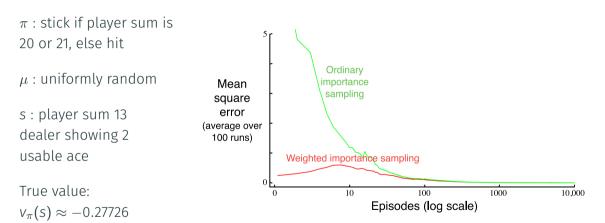
Define $\mathcal{E}(s)/\mathcal{E}(s, a)$ as before for first-visit or every-visit MC

Estimate v_{π}/q_{π} as

$$\begin{aligned} \mathsf{v}_{\pi}(\mathsf{s}) &\approx \eta^{-1} \sum_{t_i \in \mathcal{E}(\mathsf{s})} \rho_{t_i:T_i} \, G^i_{t_i} \\ q_{\pi}(\mathsf{s}, a) &\approx \eta^{-1} \sum_{t_i \in \mathcal{E}(\mathsf{s}, a)} \rho_{t_i+1:T_i} \, G^i_{t_i} \quad (why \, t_i + 1?) \end{aligned}$$

- Ordinary importance sampling: $\eta = |\mathcal{E}(s, a)|$
- Weighted importance sampling: $\eta = \sum_{t_i \in \mathcal{E}(s)} \rho_{t_i:T_i}$ resp. $\eta = \sum_{t_i \in \mathcal{E}(s,a)} \rho_{t_i+1:T_i}$

Off-Policy Value Estimation in Blackjack Example



Required:

• RL book, Chapter 5 (5.1–5.7)

Optional:

• Sequential Monte Carlo Methods in Practice Arnaud Doucet, Nando de Freitas, Neil Gordon (editors) University library has copies