Reinforcement Learning
Monte Carlo Methods

Stefano V. Albrecht, Michael Herrmann
30 January 2024

THE UNIVERSITY of EDINBURGH

informatics

Lecture Outline

e Monte Carlo policy evaluation
e Monte Carlo control with...

e Exploring starts

e Soft policies

e Off-policy learning

Recap: Generalised Policy Iteration

DP methods iterate through policy evaluation and evaluation
improvement until convergence to optimal value m
function v, and policy m,

e Policy evaluation via repeated application of @ V

Bellman operator W

e Requires complete knowledge of MDP model:

improvement
p(s',rls, a) .
Can we compute optimal policy without .
knowledge of complete model? .

Monte Carlo Policy Evaluation

Monte Carlo (MC) methods learn value function based on experience

* Experience: entire episodes E' = < S{, AL, R}, S}, AL, R), ..., ST >

MC does not require complete model p(s’, r|s, a), only requires sampled episodes
Two ways to obtain episodes:

e Real experience: generate episodes directly from “real world”

e Simulated experience: use simulation model p to sample episodes

— p(s, a) returns a pair (s, r) with probability p(s’, r|s, a)

Monte Carlo Policy Evaluation

Monte Carlo (MC) Policy Evaluation:

e Estimate value function by averaging sample returns:

vz(s) = Er

T—1 : Ti—1

kR—t R—t; pi
E Req|St=5s| = 'R
3 Y Ie+1‘ t] £()] | .’y k41

where for each past episode E' = < Sp, Ay, R}, S}, Al, Ry, ..., St >:

— First-visit MC: £(s) contains first time t; for which S} = s in £

— Every-visit MC: £(s) contains all times t; for which S| = s in £

e Both methods converge to v.(s) as |E(S)| — oo

First-Visit Monte Carlo Policy Evaluation

See Tutorial 5
Initialize:
7 <— policy to be evaluated
V < an arbitrary state-value function
Returns(s) < an empty list, for all s € 8

Repeat forever:
Generate an episode using 7
For each state s appearing in the episode:
G < return following the first occurrence of s
Append G to Returns(s)
V(s) < average(Returns(s))

Example: Blackjack

Initial state:

Player Dealer

r’ Al ,-Q 1 r’ Al
Ace worth 1 6 A
or11
. AR)

Hidden card

10

4

First, player samples Then, dealer samples
cards from deck (hit) cards from deck (hit)
until stop (stick) until sum > 16 (stick)

Player loses (-1 reward) if bust (card sum > 21)
Player wins (+1 reward) if Dealer bust or Player sum > Dealer sum

Example: Blackjack

Player policy 7:

stick if player sum is
20 or 21, else hit

Estimate of v,; using MC ...

States s (3-tuple):

- Player sum (12-21)

- Dealer card (ace-10)
- Usable ace?

Example: Blackjack

After 10,000 episodes After 500,000 episodes

Player policy
stick if player s.um is Usable
20 or 21, else hit ace

States s (3-tuple):
- Player sum (12-21)
- Dealer card (ace-10) No

usable
— ?
Usable acer ace

States in Blackjack

Couldn’t we just define states as S; = {Player cards, Dealer card}?

e Tricky: states would have variable length (player cards)

e |f we fix maximum number of player cards to 4, then there are 10° = 100, 000
possible states! (ignoring face cards and ordering)

States in Blackjack

Couldn’t we just define states as S; = {Player cards, Dealer card}?

e Tricky: states would have variable length (player cards)

e |f we fix maximum number of player cards to 4, then there are 10° = 100, 000
possible states! (ignoring face cards and ordering)

Blackjack example uses engineered state features:

e Fixed length: S; = (Player sum, Dealer card, Usable ace?)

e Player sum limited to range 12-21 because decision below 12 is trivial (always hit)
e Number of states: 10 « 10 x 2 = 200 — much smaller problem!

e Still has all relevant information

Blackjack and Dynamic Programming

Can we solve Blackjack MDP with DP methods?

e Yes, in principle, because we know complete MDP

e But computing p(s’, r|s,a) can be complicated!
E.g. what is probability of +1 reward as function of Dealer’s showing card?

Blackjack and Dynamic Programming

Can we solve Blackjack MDP with DP methods?

e Yes, in principle, because we know complete MDP

e But computing p(s’, r|s,a) can be complicated!
E.g. what is probability of +1 reward as function of Dealer’s showing card?

e On other hand, easy to code a simulation model:
— Use Dealer rule to sample cards until stick/bust, then compute reward
— Reward outcome is distributed by p(s’, r|s, a)

e MC can evaluate policy without knowledge of probabilities p(s’, r|s, a)

Monte Carlo Estimation of Action Values

MC methods can learn v, without knowledge of model p(s/, r|s, a)

= But improving policy = from v, requires model (why?) /Cf\
T
a

10

Monte Carlo Estimation of Action Values

MC methods can learn v, without knowledge of model p(s/, r|s, a)

= But improving policy = from v, requires model (why?) /Cf\
T
a
Must estimate action values: .
p
ar(s,a) = Ex[G|St = s, At = q] ') O Os'

e Improve policy without model: 7/(s) = arg maxq g-(S, a)
e Use same MC methods to learn g, but visits are to (s, a)-pairs
e Converges to g, if every (s, a)-pair visited infinitely many times in limit

E.g. exploring starts: every (s, a)-pair has non-zero probability

of being starting pair of episode
10

Monte Carlo Control

evaluation
e MC policy evaluation: m
Estimate g, using MC method
T Q
e Policy improvement:
Improve w by making greedy wrt g, g ereedy(Q)

improvement

n

Monte Carlo Control with Exploring Starts

Greedy policy meets conditions for policy evaluation

improvement theorem: m
G (S, T41(5)) = G, (S, arg max qr, (5, a))
a 7-‘- Q

- mc?xq”h(s> Cl)
> Qmy (S, mr(S)) (why?) 7~ greedy(Q)

=V, (S) improvement

Assumes exploring starts and infinite MC iterations
e |n practice, we update only to a given performance threshold
e Or alternate between evaluation and improvement per episode

12

Monte Carlo Control with Exploring Starts

Initialize, for all s € 8, a € A(s):
Q(s,a) < arbitrary
m(s) < arbitrary
Returns(s,a) < empty list

Repeat forever:
Choose Sy € 8 and Ay € A(Sp) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ag, following 7
For each pair s, a appearing in the episode:
G <+ return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s,a))
For each s in the episode:

7(s) < argmax, Q(s,a)
13

Blackjack Example with MC-ES

T,
B
Policy 7: STICK 1%
L Usable _\—I_'g
stick if player sum ace i:
is 20 or 21, else hit HIT 114

A2345678910

Exploring starts: i
o 119 €
sample initial states No STICK 118 3

uniformly randomly ~usable lie g
ace HIT 114 8
i

S
A2345678910
Dealer showing

Monte Carlo Control with Soft Policies

Convergence to g, requires that all (s, a)-pairs are visited infinitely many times

e Exploring starts guarantee this, but impractical (why?)

15

Monte Carlo Control with Soft Policies

Convergence to g, requires that all (s, a)-pairs are visited infinitely many times

e Exploring starts guarantee this, but impractical (why?)

Other approach: use soft policy such that w(a|s) > 0 for all s,a
e e.g. e-soft policy: w(als) > €/|A| fore >0

e Policy improvement: make policy e-greedy wrt g,

e/|A|+ (1—¢€) if a=argmaxy q(s,a)
m'(als) =
/| Al else

15

Monte Carlo Control with Soft Policies

e-greedy policy meets conditions for policy improvement theorem:
Gr(s,7'(s)) = Z '(als) gx(s,)

|A|Zqﬂsa (1~ €) maxax(s, a)

_w;qﬁs |A|Zqﬁsa+z m(als) G« (s, a)
= Vr(S)

e Thus, «’ better or equal to , but both are still e-soft

® g-(s,7(s)) = vx(s) only when 7/ and 7 both optimal e-soft policies

Monte Carlo Control with Soft Policies

Initialize, for all s € 8, a € A(s):
Q(s,a) < arbitrary
Returns(s,a) < empty list
m(als) « an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s, a appearing in the episode:
G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s,a))
(c) For each s in the episode:
A* < argmax, Q(s,a)
For all a € A(s):
1—e+¢/|A(s)] ifa= A"
m(als) < { < /JA(s)] if o £ A"

Off-Policy Methods

Like exploring starts, soft policies ensure all (s, a) are visited infinitely many times
e But policies restricted to be soft
= Optimal policy is usually deterministic!

e Could slowly reduce ¢, but not clear how fast

Off-Policy Methods

Like exploring starts, soft policies ensure all (s, a) are visited infinitely many times

e But policies restricted to be soft
= Optimal policy is usually deterministic!

e Could slowly reduce ¢, but not clear how fast

Other approach: off-policy learning
e Learn g, based on experience generated with behaviour policy u # =
e Requires “coverage”: if w(a|s) > 0 then p(a|s) > 0, for all s,a

— e.g. use soft policy u

e 7 can be deterministic — usually the greedy policy

Discussion: On-Policy vs Off-Policy Methods

On-policy: Off-policy:

Learn g, with experience Learn g, with experience
generated using policy generated using policy p # =«

Importance Sampling Ratio

We have episodes generated from p

= Expected return at t is E,[G¢|St = s] = Vv,.(S)

20

Importance Sampling Ratio

We have episodes generated from p

= Expected return at t is E,[G¢|St = s] = Vv,.(S)

Fix expectation with sampling importance ratio:

TTh=t 7(AkISk) P(Sk1s Rees|Sks Ar)

o (ArISk)
k

ptT =
TTit 1(ARISk) P(Skts RegalSrs Ar) l_It (ArlSk)

* E,[pt1Gt|St = S] = v, (S)

20

Importance Sampling Ratio

E, [pt:1 Gt|St = 5] =

(71
> T r(Arlsk) o
E:St=s Lk=t

71

= > T mAlSe) P

E:St=s Lk=t
71

= > | T =(AIsk)

E:St=s Lk=t

Sk+1s Ret1|Sks Ar)

(Sk+1 R \Sk,Ak)

P(Sk+1, Rr+1|Sks Ar)

21

Evaluating Policies with Importance Sampling

Denote episodes E' = < S{,, Ay, R}, St, A}, RY, ..., St >
Define £(s)/&(s, a) as before for first-visit or every-visit MC

Estimate v /g, as

VTI'(S) ~ 7771 Z Pt;:T; G:f,
tie&(s)
QW(S7 a) ~ 7]_1 Z Pti+1:T,; Glt, (Why ti =+ 1?)
tie £(s,a)

e Ordinary importance sampling: n = |£(s, a)|
e Weighted importance sampling: 1= 3" ce(s) Pt:1, T€SP. 1= D 4 ce(s,a) Ptt1T,

22

Off-Policy Value Estimation in Blackjack Example

m : stick if player sum is

20 or 21, else hit .

. \ Ordinary
w : uniformly random Mean \importance

square \ sampling
s : player sum 13 error \
. (average over [
dealer showing 2 100 runs) \
usable ace | Weighted impor\{éh\ct;:‘\sampling
/\"\\K
Of, : : " —]

True value: 0 10 100 1000 10,000

VW(S) ~ —0.27726 Episodes (log scale)

23

Required:
e RL book, Chapter 5 (51-5.7)

Optional:

e Sequential Monte Carlo Methods in Practice
Arnaud Doucet, Nando de Freitas, Neil Gordon (editors)
University library has copies

24

