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Lecture Outline

e Temporal-difference (TD) policy evaluation
e TD control:

e Sarsa

e Q-learning

e Expected Sarsa

e n-step TD methods



Method Comparison

Method Model-free? Bootstrap?
Dynamic Programming No Yes
Monte Carlo Yes No
Temporal-Difference Yes Yes




Recap: Dynamic Programming




Recap: Monte Carlo Methods

St




Now: Temporal-Difference Learning




Temporal-Difference Policy Evaluation

General iterative update rule:
NewEstimate < OldEstimate + StepSize [ Target — OldEstimate |
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Temporal-Difference Policy Evaluation

General iterative update rule:
NewEstimate < OldEstimate + StepSize [ Target — OldEstimate |

MC update:
V(St) — V(St) + Oé[ Gz - V(St) ]

Notice: _
Va(S) = Ex[Gt|St = 5]

= Ex[Rex1 + 7G41|St = 9]

= Ex[Rit1 + 7r(St41)|St = 5]

Use as target



Temporal-Difference Policy Evaluation

General iterative update rule:
NewEstimate < OldEstimate + StepSize [ Target — OldEstimate |

MC update:
V(St) — V(St) + Oé[ Gz - V(St) ]

TD(0) update:
V(St) — V(St) + Oé[ Riv1 + 19 \/(Sprq) — V(St) ]



TD(0) for Policy Evaluation

Input: the policy 7 to be evaluated
Algorithm parameter: step size a € (0, 1]
Initialize V(s), for all s € 8, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:
A < action given by 7 for S
Take action A, observe R, S’
V(S) + V(S)+alR+V(S) - V(9)]
S« 5

until S is terminal



Example: Driving Home

(=1 i R vs) Y(So)
FElapsed Time  Predicted Predicted
State (minutes) Time to Go Total Time
Sy leaving office, friday at 6 0 30 30
S, reach car, raining 5 35 40
S, exiting highway 20 15 35
S; 2ndary road, behind truck 30 10 40
S, entering home street 40 3 43

Ss arrive home 43 0 43



Example: Driving Home

MC updates (o = 1) TD updates (a = 1)
45 4
___actual outcome ____ actual
outcome
. 40
Predicted
total
travel 35
time
30
T T T T T T T T T T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office  car highway road street home

Situation Situation



Example: Driving Home (Extra)

40
o — — Total time taken
(&) —%— [nitial estimate
g 30 —<— After MC update
= —pP— After TD update
V(St) T 20t
D
©
ks
i 10 |
O C 1 1 1 1 1 1
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Convergence of TD(0)

TD(0) converges to v, with prob. 1if:
e all states visited infinitely often
and

e standard stochastic approximation conditions (a-reduction)

Vs Zat—>oo and Za§<oo

t:S¢=s t:S¢=s

n



Convergence of TD(0)

Intuition: what is TD(0) update on expectation?

V(S1) = Ex[(1— a)V(S1) + @ [Reps +7V(Seen)] (rewrite)
= (1= V(S1) + AEx[Res1 + W(Se4)]
= (1 )V(5:) +a P nlals) Y p(s' iSe ) [r+ V()
= (1= a)V(St) + a v, (S) -

Bellman operator v.(St) is contraction mapping with fixed point v,!
e Expected TD update moves V(S;) toward v,(St) by «

e o used to control averaging in sampling updates
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Advantages of TD Learning

e Like MC: TD does not require full model p(s’,r|s,a), only experience

e Unlike MC: TD can be fully incremental
= Learn before final return is known

= Less memory and computation

e Both MC and TD converge to v, /q, under certain assumptions

= But TD often faster in practice
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Example: Random Walk

W< (A)="(B)="=(C)="m(D)="(E) =M r(left/right|s) = 0.5

start
0.8 Estimated
value 100,
0.6 - 10
S
Values learned by TD(0) after 0/1/10/100 047 True
episodes (o = 0.1) values
0.2 4
0 ] ] ] ] 1
A B C D E



Example: Random Walk

W< (A)="(B)="=(C)="m(D)="(E) =M r(left/right|s) = 0.5

start
0.25 - Empirical RMS error,
. averaged over states
0.2\,
Root mean-squared error averaged over 015
all states and 100 episodes
0.1-
a=.03
0.05
TD methods usually learn faster than MC TD —
0 | | | [

0 25 50 75 100
Walks / Episodes 14



On-Policy TD Control: Sarsa

On-policy: learn g, and improve 7 while following 7

Sarsa:
Q(St, At) <= Q(St,At) +a[ Repr + 7051, Ar) — Q(St, Ar) |

e |f Sty terminal state, define Q(St41,At+1) =0

e Ensure exploration by using e-soft policy =

15



On-Policy TD Control: Sarsa

On-policy: learn g, and improve 7 while following 7

Sarsa:
Q(St, At) <= Q(St,At) +a[ Repr + 7051, Ar) — Q(St, Ar) |

e |f Sty terminal state, define Q(St41,At+1) =0

e Ensure exploration by using e-soft policy =

Converges to . with prob 1. if all (s, a) infinitely visited and standard a-reduction

vs,a: Z at — 00, Z af < 0o

tZSt:S,A[:G tZSt:S,A[:G
and e gradually goes to 0 (why?)
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On-Policy TD Control: Sarsa

See Tutorial 5

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
QS 4) + Q(S, A) + a[R+7Q(5, A') — Q(S, A)]
S+ S A+ Al
until S is terminal




Example: Windy Gridworld with Sarsa

170 ~
150
0 | =
a .
_8 100 4 Actions .
) T
a e =0.1
L a=0.5
50
Reward —1 until
goal reached
O_

(I) lOIOO ZOIOO 30|00 40|OO SOIOO 60|00 70|00 8OIOO

Time steps 17



Off-Policy TD Control: Q-Learning

Off-policy: Learn g, and improve « while following
Q-learning:

Q(St,Ar) 4 Q(St,A) + @ | Revr 7 max (S, a) = Q(Se, )

Converges to , with prob. 1if all (s, a) infinitely visited and standard a-reduction



Off-Policy TD Control: Q-Learning

Off-policy: Learn g, and improve « while following
Q-learning:

Q(St,Ar) 4 Q(St,A) + @ | Revr 7 max (S, a) = Q(Se, )

Converges to , with prob. 1if all (s, a) infinitely visited and standard a-reduction

Why is there no importance sampling ratio?
o Recall: for g,, ratio defined as [T}_! ., w(Ax|Sk)/1(Ak|Sk)

e Because ain g.(s,a) is no random variable



Off-Policy TD Control: Q-Learning

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) < Q(S, 4) + a[R + ymax, Q(5", a) — Q(S, A)]
S« S

until S is terminal




Example: Cliff Walking with Sarsa and Q-Learning

w_

The Cliff

R=-100

Sarsa
-254
Sum of _5¢
rewards Q-learning
during
episode __ |
-100 T T T T 1
0 100 200 300 400 500
Episodes

e-greedy exploration (e = 0.1)
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Expected Sarsa

Can we speed-up learning by reducing variance of updates?

Expected Sarsa:

Q(St, Ar) <= Q(St, At) + a [Rep1 + YE[Q(St41, Atg1) | Sta] — Q(St, At)]

= Q(St,At) + «

Ret1 +1 Z m(a|St41) Q(St4,a) — Q(SuAt)]

a

e Moves deterministically in same direction as Sarsa on expectation
e Can use as on-policy or off-policy

= Q-learning is special case where r is greedy and p explores (e.g. e-greedy)
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Expected Sarsa in Cliff Walking

All algorithms used
e-greedy with e = 0.7

Solid circles mark
best interim
performance

0

-40

Reward
per -80
episode

-120

Expected Sarsa

x/

-Iarning xo X |
X Sarsa’
X g VYV Y Y .
: x g7 Y MR- g-@ 8- i
IR g g Q-learning
x ¥ g
v oo |
. @’ Interim Performance
Y. (after 100 episodes) i
‘o
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
«
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n-step TD Methods

1-step TD co-step TD

TD(0) uses 1-step return: andTD(O) 2-stepTD  3-step TD n-stepTD  and Monte Carlo
Grtir = Reet + VSt T T T 0
MC uses full return: O % %) (If (If
R
S
.

23



n-step TD Methods

n-step return bridges TD(0) and MC:

1-step TD co-step TD

TD(0) uses 1-step return: and TD(0) 2-stepTD  3-step TD n-step TD  and Monte Carlo
Get11 = Repr +YVie(Se) CIE ? ? CIf CIE
MC uses full return: O % %) (f (f
Gt:oo = i7hi1Rt+k (I) I I I
o9 g
i !
!

n
Gttn = Z’Y’QARH!? + 7"Virn-1(St+n)
k=1
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n-step TD Methods

n-step return:
n

Gtt4n = Z’Yk_1Rt+le + "Vitn—1(St+n)
k=1

n-step TD uses n-step return as target:

Vien(St) = Vign—1(5t) + @ [Gr-rn — Vign—1(5t)]

24



n-step TD Methods in Random Walk Example

0.55
0.5

Average 045

RMS error
over 19 states 04
and first 10
episodes %
03
0.25 1 1 1 1 1 |
0 02 04 0.6 0.8 1
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On/Off-Policy Learning with n-Step Returns

Can similarly define n-step TD policy learning:

n
Gttyn = Z’Y}?_”?H/e + " Qtn-1(Stn, At+n)
k=1

Qt4n(St, At) = Qtyn-1(St,At) + aptstten [Grt4n — Qt4n—1(St, At)]

with importance ratio

min(h,T—1)
in= ] 7(Ar|Sk)
' o H(ARISE)
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n-step TD Control in a Gridworld

Action values increased Action values increased
Path taken by one-step Sarsa by 10-step Sarsa
>y
v
P9 1y

| O
*
*
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Unified View

width
of backup i
Temporal- Dynamic .
difference programming
learning
height
(depth)
of backup
Exhaustive
Monte - search
Carlo .

by I:I/\El = Planning



Required:
e RL book, Chapter 6 (6.1-6.2, 6.4-6.6) and Chapter 7 (71-7.3)

Optional (convergence proofs):
e For TD(0): Dayan, P. (1992). The convergence of TD()) for general A\. Machine
Learning, 8(3):341-362

e For Sarsa: Singh, S., Jaakkola, T, Littman, M., Szepesvari, C. (2000). Convergence
results for single-step on-policy reinforcement-learning algorithms. Machine
Learning, 38(3):287-308

e For Q-learning: Watkins, C,, Dayan, P. (1992). Q-learning. Machine Learning,
8(3-4):279-292
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