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Lecture Outline

• Temporal-difference (TD) policy evaluation
• TD control:
• Sarsa
• Q-learning
• Expected Sarsa

• n-step TD methods
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Method Comparison

Method Model-free? Bootstrap?

Dynamic Programming No Yes

Monte Carlo Yes No

Temporal-Difference Yes Yes
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Recap: Dynamic Programming
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Recap: Monte Carlo Methods
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Now: Temporal-Difference Learning
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Temporal-Difference Policy Evaluation

General iterative update rule:
NewEstimate← OldEstimate+ StepSize [ Target− OldEstimate ]
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General iterative update rule:
NewEstimate← OldEstimate+ StepSize [ Target− OldEstimate ]

MC update:
V(St)← V(St) + α [ Gt − V(St) ]
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Temporal-Difference Policy Evaluation

General iterative update rule:
NewEstimate← OldEstimate+ StepSize [ Target− OldEstimate ]

MC update:
V(St)← V(St) + α [ Gt − V(St) ]

Notice:
vπ(s)

.
= Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

= Eπ[Rt+1 + γvπ(St+1)|St = s]
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Use as target



Temporal-Difference Policy Evaluation

General iterative update rule:
NewEstimate← OldEstimate+ StepSize [ Target− OldEstimate ]

MC update:
V(St)← V(St) + α [ Gt − V(St) ]

TD(0) update:
V(St)← V(St) + α [ Rt+1 + γV(St+1)− V(St) ]
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TD(0) for Policy Evaluation
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Example: Driving Home
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S0
S1
S2
S3
S4
S5

∑t
k=1 Rk V(St) V(S0)(γ = 1)



Example: Driving Home
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MC updates (α = 1) TD updates (α = 1)



Example: Driving Home (Extra)

S0 S1 S2 S3 S4 S5
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V(St)



Convergence of TD(0)

TD(0) converges to vπ with prob. 1 if:

• all states visited infinitely often

and
• standard stochastic approximation conditions (α-reduction)

∀s :
∑
t:St=s

αt →∞ and
∑
t:St=s

α2t <∞
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Convergence of TD(0)

Intuition: what is TD(0) update on expectation?

V(St)← Eπ[(1− α)V(St) + α [Rt+1 + γV(St+1)]] (rewrite)

= (1− α)V(St) + αEπ[Rt+1 + γV(St+1)]

= (1− α)V(St) + α
∑
a

π(a|St)
∑
s′,r

p(s′, r|St,a)
[
r+ γV(s′)

]
= (1− α)V(St) + α vπ(St)

Bellman operator vπ(St) is contraction mapping with fixed point vπ!
• Expected TD update moves V(St) toward vπ(St) by α
• α used to control averaging in sampling updates
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Advantages of TD Learning

• Like MC: TD does not require full model p(s′, r|s,a), only experience

• Unlike MC: TD can be fully incremental
⇒ Learn before final return is known
⇒ Less memory and computation

• Both MC and TD converge to vπ/qπ under certain assumptions
⇒ But TD often faster in practice
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Example: Random Walk

π(left/right|s) = 0.5

Values learned by TD(0) after 0/1/10/100
episodes (α = 0.1)
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Example: Random Walk

π(left/right|s) = 0.5

Root mean-squared error averaged over
all states and 100 episodes

TD methods usually learn faster than MC
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On-Policy TD Control: Sarsa

On-policy: learn qπ and improve π while following π

Sarsa:
Q(St,At)← Q(St,At) + α [ Rt+1 + γQ(St+1,At+1)− Q(St,At) ]

• If St+1 terminal state, define Q(St+1,At+1) = 0
• Ensure exploration by using ϵ-soft policy π

Converges to π∗ with prob 1. if all (s,a) infinitely visited and standard α-reduction

∀s,a :
∑

t:St=s,At=a
αt →∞,

∑
t:St=s,At=a

α2t <∞

and ϵ gradually goes to 0 (why?)
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On-Policy TD Control: Sarsa
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See Tutorial 5



Example: Windy Gridworld with Sarsa
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γ = 1.0
ϵ = 0.1
α = 0.5

Reward −1 until
goal reached



Off-Policy TD Control: Q-Learning

Off-policy: Learn qπ and improve π while following µ

Q-learning:

Q(St,At)← Q(St,At) + α
[
Rt+1 + γmax

a
Q(St+1,a)− Q(St,At)

]

Converges to π∗ with prob. 1 if all (s,a) infinitely visited and standard α-reduction

Why is there no importance sampling ratio?

• Recall: for qπ , ratio defined as
∏T−1
k=t+1 π(Ak|Sk)/µ(Ak|Sk)

• Because a in qπ(s,a) is no random variable
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Off-Policy TD Control: Q-Learning
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Example: Cliff Walking with Sarsa and Q-Learning
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ϵ-greedy exploration (ϵ = 0.1)



Expected Sarsa

Can we speed-up learning by reducing variance of updates?

Expected Sarsa:

Q(St,At)← Q(St,At) + α [Rt+1 + γEπ[Q(St+1,At+1) | St+1]− Q(St,At)]

= Q(St,At) + α

[
Rt+1 + γ

∑
a

π(a|St+1)Q(St+1,a)− Q(St,At)
]

• Moves deterministically in same direction as Sarsa on expectation
• Can use as on-policy or off-policy
⇒ Q-learning is special case where π is greedy and µ explores (e.g. ϵ-greedy)
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Expected Sarsa in Cliff Walking

All algorithms used
ϵ-greedy with ϵ = 0.1

Solid circles mark
best interim
performance
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n-step TD Methods

TD(0) uses 1-step return:

Gt:t+1
.
= Rt+1 + γVt(St+1)

MC uses full return:

Gt:∞
.
=

∞∑
k=1

γk−1Rt+k

n-step return bridges TD(0) and MC:

Gt:t+n =
n∑
k=1

γk−1Rt+k + γnVt+n−1(St+n)
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n-step TD Methods

n-step return:

Gt:t+n =
n∑
k=1

γk−1Rt+k + γnVt+n−1(St+n)

n-step TD uses n-step return as target:

Vt+n(St)
.
= Vt+n−1(St) + α [Gt:t+n − Vt+n−1(St)]
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n-step TD Methods in Random Walk Example
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On/Off-Policy Learning with n-Step Returns

Can similarly define n-step TD policy learning:

Gt:t+n =
n∑
k=1

γk−1Rt+k + γnQt+n−1(St+n,At+n)

Qt+n(St,At)
.
= Qt+n−1(St,At) + αρt+1:t+n [Gt:t+n − Qt+n−1(St,At)]

with importance ratio

ρt:h
.
=

min(h,T−1)∏
k=t

π(Ak|Sk)
µ(Ak|Sk)
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n-step TD Control in a Gridworld
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Unified View
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⇒ Planning



Reading

Required:
• RL book, Chapter 6 (6.1–6.2, 6.4–6.6) and Chapter 7 (7.1–7.3)

Optional (convergence proofs):
• For TD(0): Dayan, P. (1992). The convergence of TD(λ) for general λ. Machine
Learning, 8(3):341–362

• For Sarsa: Singh, S., Jaakkola, T., Littman, M., Szepesvári, C. (2000). Convergence
results for single-step on-policy reinforcement-learning algorithms. Machine
Learning, 38(3):287–308

• For Q-learning: Watkins, C., Dayan, P. (1992). Q-learning. Machine Learning,
8(3-4):279–292
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