Reinforcement Learning

Planning and Learning

Stefano V. Albrecht, Michael Herrmann
6 February 2024

\~ THE UNIVERSITY of EDINBURGH

Lecture Outline

Planning in reinforcement learning
Dyna-Q

Rollout planning

Monte Carlo tree search

Offline vs online planning

Unified View

width
of backup i
Temporal- Dynamic .
difference programming
learning

height .)

(depth) Planning:
of backup

Using a model

Exhaustive
. search

Planning: any process which uses a model of the environment to compute a plan of
action (policy) to achieve a specified goal

—»| Planner

e Dynamic programming is planning: uses model p(s’, r|s, a)

Model: anything the agent can use to predict how environment will respond to
actions

Model: anything the agent can use to predict how environment will respond to
actions

e Distribution model: description of all possibilities and their probabilities

p(s’,rls,a) forall s,a,s',r

Model: anything the agent can use to predict how environment will respond to
actions

e Distribution model: description of all possibilities and their probabilities

p(s’,rls,a) forall s,a,s',r

e Simulation (sample) model: produces sample outcomes
(s',r) ~B(s,a) st Pr{p(s,a)=(s'.n} = p(s’rls,a)

Simulation model usually easier to specify than distribution model

Paths to a Policy: Model-Free RL

Model-free RL

Environmental
interaction

Experience

Direct RL

function

Paths to a Policy: Model-Based RL

Model-based RL

Model
learning

Direct
planning

vl Polic
function y

Environmental Simulation

interaction

Experience

Direct RL
methods

Dyna-Q: Integrating Planning, Learning, Acting

Initialize Q(s,a) and Model(s,a) for all s € § and a € A(s)
Do forever:
a) S < current (nonterminal) state
b) A < e-greedy(S, Q)
) Execute action A; observe resultant reward, R, and state, S’
) Q(S, A) + Q(S, A) + a[R + ymax, Q(S', a) — Q(S, A)]«— direct RL
e) Model(S, A) < R, S’ (assuming deterministic environment)<«— model learning
f) Repeat n times:
S <+ random previously observed state
A < random action previously taken in § «— planning
R, S’ + Model(S, A)
Q(S, A) + Q(S,A) + a[R + ymax, Q(S5',a) — Q(S, A)]

(
(
(c
(d
(
(

Dyna-Q in Maze Example

800
v=0.95
e=0.1
600
a=0.1
Steps 0 planning steps
per 4004 (direct RL only) S
epISOde 5 planning steps
50 planning steps
200
14
T T T T T 1
2 10 20 30 40 50

Episodes 8

Dyna-Q in Maze Example

Greedy policy halfway through second episode:

WITHOUT PLANNING(n:O) WITH PLANNING (n 50)
O G sanabilluail [€

} AsaBiR. !

S S -~y | !
===~}

LIl

=t == =

When the Model is Wrong: Blocking Maze

LT IsE T TT]

[T Is [T TT1]

150

Cumulative
reward

0 1000

2000 3000

Time steps 10

When the Model is Wrong: Shortcut Maze

LT IsT T 1] : [Is T[]

400+

Cumulative
reward

0 3000 6000
Time steps n

See Tutorial 6
Dyna-Q+ uses an exploration bonus heuristic:

e Keeps track of time since each state-action pair was tried in real environment

e Bonus reward is added for transitions caused by state-action pairs related to how
long ago they were tried:

R —l— K \/; ‘\-/time since last visiting

the state-action pair

e Incentive to re-visit “old” state-action pairs

12

Rollout Planning

Dyna-Q uses model to reuse past experiences

Rollout planning:

e Use model to simulate (“rollout”) future trajectories
e Each trajectory starts at current state S¢

e Find best action A; for state S;

Rollout Planning with Forward Updating

Rollout Q-planning with forward updating:
1: Given: simulation model Model
2. Initialise: Q(s, a) for all s,a
3 fort=20,1,2,3,...do
4 St < current state

5. for n rollouts do

6: S« St

7: while S is non-terminal (or fixed-length rollouts) do

8: select action A based on Q(S,) with some exploration // e.g. e-greedy
9: (R,S") ~ Model(S,A)

10: Q-update: Q(S,A) «+ Q(S,A) + a[R + ymaxq Q(S', a) — Q(S, A)]

1: S« ¢

12. select action A; greedily from Q(S¢,)

Rollout Planning Optimality

If model is correct and under Q-learning conditions (all (s, a) infinitely visited and
standard a-reduction), rollout planning learns optimal policy

15

Rollout Planning Optimality

If model is correct and under Q-learning conditions (all (s, a) infinitely visited and
standard a-reduction), rollout planning learns optimal policy

If model is incorrect, learned policy likely sub-optimal on real task

e Can range from slightly sub-optimal to failing to solve real task (examples?)

15

Rollout Planning Optimality

If model is correct and under Q-learning conditions (all (s, a) infinitely visited and
standard a-reduction), rollout planning learns optimal policy

If model is incorrect, learned policy likely sub-optimal on real task

e Can range from slightly sub-optimal to failing to solve real task (examples?)

Next: can we use rewards from rollouts more effectively?

= Back-propagate rewards

15

Rollout Planning with Backward Updating (Back-Propagation)

Rollout Q-planning with backward updating:
1: Given: simulation model Model
2: Initialise: Q(s, a) for all s, a; LIFO stack Trace = {}
3: fort=20,1,2,3,...do
4 St < current state
5. for nrollouts do
6: S+ St
7 while S is non-terminal (or fixed-length rollouts) do // Rollout
8 select action A based on Q(S,) with some exploration
9: (R,S") ~ Model(S,A)
10: push (S,A,R,S’) to Trace

Ik S+ ¢

12: while Trace not empty do // Backprop
13: pop (S,A,R,S’) from Trace

14 Q(S,A) + Q(S,A) + a[R + 7 maxq Q(S', a) — Q(S, A)]

15 select action A; greedily from Q(S, +) 16

Rollout Planners in Maze Example

4001 =>& Forward, 5 rollouts, length 5
-~ Forward, 5 rollouts, length 10 —0.95
350 1 —#— Forward, 10 rollouts, length 20 T=0
=>& Backward, 5 rollouts, length 5 e=0.1
8 300 A -ll- Backward, 5 rollouts, length 10 a—=01
B —— Backward, 10 rollouts, length 20 -
U 250 -
©
o
D 200
S S
0
o 150 7
Q
4
Y 100 4 H
50
0 - T T T T

1 2 3 4 5 6
Episode 17

Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS):

e General, efficient rollout planning with backward updating

e Stores partial Q as tree and asymmetrically expands tree based on most
promising actions

Q is recursive tree structure: N
Q(s, a) = E[Rt11 + v maxg Q(St41,0") [St = a,Ar = 4] s’

Phases of Monte Carlo Tree Search

/—v Selection — Expansion —— Simulation —> Backpropagation \

Tree Default

Policy Po%icy
v
- 4 J

Browne et al. (2012)
19

General MCTS Method

MCTS-Search(S;):
1. Find node vo with state(vg) = S¢ (or create new node)
2. while within computational budget do
3 v« TreePolicy(vo) // Select node in tree and expand
4 A <+ DefaultPolicy(state(v;)) // Simulation steps
5. Backprop(v;, A)
6: return action(BestChild(vy)) // e.g. highest expected return; most visited child

e Tree policy can be any exploration policy

e Backprop works just as before

20

Upper Confidence Bounds for Trees

Upper Confidence Bounds for Trees (UCT):

e Popular MCTS variant — easy to use and often effective

e Uses UCB action selection as tree policy, and a = 1/N(S, A)

UCB recap: estimate upper bound on action value:

) a, if a never tried in S
<_
arg maxq Q(S, a) + ¢4/log N(S)/N(S, a)

e N(S) is number of times state S has been visited

e N(S,a) is number of times action a was selected in S

21

Simulation Step

Simulation step gives estimate of return at state, e.g.:

Random-DefaultPolicy(S):

1 G« 0 Possible improvements:

2: while S is non-terminal do e Average over multiple simulations
3 A« random action (uniformly) e Use domain-specific heuristic to
4 (R,S") ~ Model(S,A) - select better actions than

5. G+ R+1G random

6 S+« § - evaluate state directly (e.g. in

2 return G Chess we know that some states

are better than others)

22

Offline Planning

Imagine you are given an MDP for a chess game against a specific opponent

Offline planning:

e Use MDP to find best policy before the
actual chess game takes place (offline)

e Use as much time as needed to find
policy

e Policy is complete: gives optimal action
for all possible states

Dyna-Q and dynamic programming are
suitable for offline planning

23

Online Planning

Imagine you are given an MDP for a chess game against a specific opponent

Online planning:

e Use MDP to find best policy during the
actual chess game (online)

e Limited compute time budget at each
state (e.g. seconds/minutes in chess)

e Policy usually incomplete: gives
optimal action for current state

Rollout planning (including MCTS) is
suitable for online planning
2%

Paths to a Policy: Model-Based RL

Model
learning

Direct
planning

vl Polic
function y

Environmental Simulation

interaction

Experience

Direct RL
methods

25

Required:
e RL book, Chapter 8 (8.1-8.3, 810-811)

Optional:

e Browne et al. (2012). A Survey of Monte Carlo Tree Search Methods. IEEE
Transactions on Computational Intelligence and Al in Games, Vol. 4, No. 1

e UCT paper: L. Kocsis and C. Szepesvari (2006). Bandit based Monte-Carlo Planning.
European Conference on Machine Learning

e T.Vodopivec, S. Samothrakis, B. Ster (2017). On Monte Carlo Tree Search and
Reinforcement Learning. Journal of Artificial Intelligence Research, Vol. 60

26

