Reinforcement Learning

Value Function Approximation

Stefano V. Albrecht, Michael Herrmann
16 February 2024

\~ THE UNIVERSITY of EDINBURGH

Lecture Outline

Curse of dimensionality and generalisation

Value function approximation

Stochastic gradient descent

Linear value functions and feature construction

Semi-gradient TD control

Curse of Dimensionality

Theory so far has assumed:
e Unlimited space: can store value function as table

e Unlimited data: many (infinite) visits to all state-action pairs

In practice these assumptions are usually violated, because...

Curse of Dimensionality: . LT
. oK
e Number of states grows exponentially : N %
with number of state variables ; >
e |f state described by k variables with “?t 5%15
values in {1, ..., n}, then O(nk) states L 3G

Go: 10"° states Hydrogen atoms: 108°
2

Compact Value Functions and Generalisation

Two problems...

Compact Value Functions and Generalisation

Two problems...

Not enough memory to store value function as table

e Tabular v(s)/q(s,a) use storage proportional to |S]

e Need compact representation of value function

(But sometimes can be enough to store only partial value function; e.g. MCTS)

Compact Value Functions and Generalisation

Two problems...

Not enough memory to store value function as table

e Tabular v(s)/q(s,a) use storage proportional to |S]

e Need compact representation of value function

(But sometimes can be enough to store only partial value function; e.g. MCTS)
No data (or not enough data) to estimate return in each state
e Many states may never be visited

e Need to generalise observations to unknown state-action pairs

Generalisation

Blue circle must move to red goal
e Agent uses optimal policy (shortest path)

Suppose we have return estimates (steps to
go) for locations S1-56
® eg V(S5) = -3, v(S4) = —6, v(52) = —31

We have no data for locations S7 and S8

(not visited yet)

e Can we estimate v(S7) and v(S8) based
on other return estimates?

Value Function Approximation

Replace tabular value function with parameterised function:
U(s,w) = vi(s)
G(s,a,w) ~ gx(s,a)

w € R? is parameter (“weight”) vector

e.g. linear function, neural network, regression tree, ...

e Compact: number of parameters d much smaller than |S|

e Generalises: changing one parameter value may change value estimate of many
states/actions

Supervised Learning

Learning a value function is a form of supervised learning:

Input-Output Minimise error/loss
. . . Parameters
examples in approximation

Examples are pairs of states and return estimates, (S, Ut), e.g.
e MC: Ut = G

e TD(0): Ut = Res1 + YU(St1, Wi)

o n-step TD: Uy = Repr + -+ + 9" "Reen + 7" W(Stpn, Wegn—1)

Supervised Learning

Desired properties in supervised learning method:

e [ncremental updates
update w using only partial data, e.g. most recent (S, Ut) or subset

Supervised Learning

Desired properties in supervised learning method:

e [ncremental updates
update w using only partial data, e.g. most recent (S, Ut) or subset

e Ability to handle noisy targets
e.g. different MC updates G; for same state S¢

Supervised Learning

Desired properties in supervised learning method:

e [ncremental updates
update w using only partial data, e.g. most recent (S, Ut) or subset

e Ability to handle noisy targets
e.g. different MC updates G; for same state S¢

e Ability to handle non-stationary targets
e.g. changing target policy, bootstrapping

= If ¥/§ differentiable, stochastic gradient descent is suitable method

Gradient Descent

e Let J(w) be differentiable function of w

— {,// - ////
e Gradient of J(w) is ::% /?//
aw) aJ(w)) T)

6W1 ’ ’ 8Wd

Vi(w) = <

e To find local minimum of J(w), adjust w in /// f
negative direction of gradient / 057

1
Wepr = We — o @ V(W)

® « is step-size parameter
convergence requires standard a-reduction

Stochastic Gradient Descent

Objective: find parameter vector w by minimising mean-squared error between
approximate value U(s,w) and true value v.(s)

J(w) = Er[(v(s) = U(s, w))’]

Stochastic Gradient Descent

Objective: find parameter vector w by minimising mean-squared error between
approximate value U(s,w) and true value v.(s)

J(w) = Er[(v(s) = U(s, w))’]

e Gradient descent finds local minimum:

1
Wy =W — S V(w)

= Wi + aBr[(vx(S) — U(s, W) VI(s, wy)]

Stochastic Gradient Descent

Objective: find parameter vector w by minimising mean-squared error between
approximate value U(s,w) and true value v.(s)

J(w) = Er[(v(s) = U(s, w))’]

e Gradient descent finds local minimum:

1
Wy =W — S V(w)

= Wi + aBr[(vx(S) — U(s, W) VI(s, wy)]

e Stochastic gradient descent samples the gradient:

Wiy = Wt + o [U(— V(St, Wt)] V\?(St, Wt)

Stochastic Gradient Descent — Convergence

Stochastic gradient descent samples the gradient:

Wi = Wi + o [Ur — U(St, We)] VI(Se, We) (1)

10

Stochastic Gradient Descent — Convergence

Stochastic gradient descent samples the gradient:

Wi = Wi + o [Ur — U(St, We)] VI(Se, We) (1)

e w; will converge to local optimum under standard a-reduction and if Ut is
unbiased estimate E.[Ut|St] = vr(St)

= MC update is unbiased but TD update is biased (why?)

10

Stochastic Gradient Descent — Convergence

Stochastic gradient descent samples the gradient:
W1 = We + o [Ur — U(St, we)] VV(St, we) (1)

e w; will converge to local optimum under standard a-reduction and if Ut is
unbiased estimate E.[Ut|St] = vr(St)

= MC update is unbiased but TD update is biased (why?)

e Note: (1) is not a true TD gradient because U; also depends on w

Ut = Rew1 + YV(St41, W)

Hence, we call it semi-gradient TD

10

Semi-gradient TD(0) for Policy Evaluation

Input: the policy 7 to be evaluated

Input: a differentiable function ¢ : 8% x RY — R such that 9(terminal,-) = 0
Algorithm parameter: step size a > 0

Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A ~ 7(:|5)
Take action A, observe R, S’
W w+a|[R+y0(S,w) — 0(S,w)]| Vo (S,w)
S+ 5

until S is terminal

n

Linear Value Function Approximation

Linear value function approximation: See Tutorial 5

d
O(s,w) = wix(s) = > wix(s)

o X(s) = (x1(S), ... x4(5)) " is feature vector of state s

, , T
e Simple gradient: Vi(s,w) = (dWTX,--- d""TX) = x(s)

oW 7 Owy

e Gradient update: Wiy = wi + o [Ur — U(St, we)] X(St)

12

Linear Value Function Approximation

Linear value function approximation: See Tutorial 5

d
O(s,w) = wix(s) = > wix(s)

o X(s) = (x1(S), ... x4(5)) " is feature vector of state s

ow " x ow " x T

e Simple gradient: Vi(s,w) = (owr 0T Towg) = X(s)

e Gradient update: Wiy = wi + o [Ur — U(St, we)] X(St)

In linear case, there is only one optimum!
= MC gradient updates converge to global optimum

= TD gradient updates converge near global optimum (TD fixed point)
12

Feature Vectors

[x-pos(s)
)= (y-pos(s))

13

State Aggregation

Exact representation:

y-pos(s)

Generalise with

e Partition states into disjoint sets S;, S, ...
with indicator functions xx(s) = [s € Sk

in-S1(s)
X(s)=1 inS2(s) | =1 0
In-S3(s) 0

State Aggregation
Exact representation:
X(s) = (X-pos(s))

y-pos(s)

Generalise with

e Partition states into disjoint sets Sy, S, ...
with indicator functions Xx(s) = [s € Sk

Special case: every state s has its own set
=

Coarse/Tile Coding

State aggregation generalises only within sets &;, Sy, ...

e Allow generalisation across sets by allowing Si, to overlap

e eg coarse coding and tile coding

« ———Tilingl —
Tiling 2

Tiling 3

Tiling 4

Continuous
2D state

pac

SN S N R

Point in L =71
state space
to be
represented

15

Example: Random Walk

e States: numbered 1to 1000, start at state 500

e Policy: randomly jJump to one of 100 states to left, or one of 100 states to right
e If jJump goes beyond 1/1000, terminates with reward —1/+1
e State aggregation: 10 groups of 100 states each

trajectory of 11 jumps

/N
N\ /’ \ O\
\
// \\\ /\ / \ \\ // \\\
/ \ \ \
/ \\ / / \ \/ / \ /\ \/ \\

-1 \“ \ / \ ‘U“ / “u‘“ \ +1
S V| L/ * ! ‘ . S
H/—/H/—’H/—’H/—’H/—A] — ——
| group 1 group 2 group 3 group 4 group5 | group 6 \9roup 7 \grBﬂp 8 group 9 group 10 /
| |
state 1 state 500 state 1000

Random Walk: MC and TD Prediction

Linear gradient MC:

Value
scale

Approximate

o

p

MCvalue v —

True
value U

I

%

State

0
1000

0.0137

Distribution
scale

0.0017

Linear gradient TD:

1 True)
value Uy

Approximate ;

TD value @\J—

1 St ate 1000

After 100,000 episodes with o =2 x 107>

Approximate Control in Episodic Tasks

e Estimate state-action values: §(s,a,w) ~ q.(s,a)

e For linear approx., features defined over states and action:

a(s,a,w) ZW, s,)

e Stochastic gradient descent:

Wip1 = Wr + o [Ur — §(St, Ar, We)] VG(Se, Ar, We)

Approximate Control in Episodic Tasks

e Estimate state-action values: §(s,a,w) ~ q.(s,a)

e For linear approx., features defined over states and action:

a(s,a,w) ZW, s,)

e Stochastic gradient descent:

Wip1 = Wr + o [Ur — §(St, Ar, We)] VG(Se, Ar, We)

e.g. Sarsa: Us = R + ’}/(AJ(St_H,At_H,Wt)
Q-learning: Us = R + v maxq §(St41, A, We)

Expected Sarsa: Ut = Rey1 + v >, 7(a|St+1) G(Se41, a, Wy)

Episodic Semi-gradient Sarsa

Input: a differentiable action-value function parameterization ¢ : 8 x A x R? — R
Algorithm parameters: step size a > 0, small € > 0
Initialize value-function weights w € R¢ arbitrarily (e.g., w = 0)

Loop for each episode:
S, A + initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S’ is terminal:
w < w+a[R— (S, A w)|Vi(s, A w)
Go to next episode
Choose A’ as a function of ¢(S’, -, w) (e.g., e-greedy)
W W+ a[R +vq(S", A, w) — (S, A,W)}VQA(S, A,w)
S+ S
A+ A

Example: Mountain Car with Linear Semi-Gradient Sarsa

Goal STATES:
car's position and velocity

ACTIONS:
three thrusts: forward, reverse, none

REWARDS:

J Gravity always —1 until car reaches the goal

Episodic, No Discounting, y=1

Semi-gradient Sarsa with linear approximation over 8 8x8 tilings
e = 0 (optimistic initial values g(s, a,w) = 0)

20

Learned Action Values in Mountain Car

MOUNTAIN CAR Goal

ST
Sl
anllles
& RS
S 7 TR TR AR
0 gessaedll T T AN S TR SRR
el NN S TR
LR I K &

) Cost-to-go:
— maxg §(s,a,w)

SR

R
e

TN

e,

SN

OISR

SR
R

2R

255

ST
e

S
AR
s

LR
Sl
25
2
2

-,
s

A

1
77
%
=
=
2%
iove
e
=

W
ANRORRSY
Q‘Qﬁi“& Sl 4
RN

-
7
12
=
vagea
7
=

2%
%

oy

227
e
2L

K
e

2
o

v

%z
=2

=

ayy
i

i

~,';.,

<L
25
S,

S

==
=7

v

N
““ N
G

e

y

22
>
2
o
2%
22

S
%
2
%
s
%
7

%

o

vy
(T
s
oy
2
%
2
z
502

s

&
2%

21

Learning Curves in Mountain Car

Mountain Car
Steps per episode
log scale
averaged over 100 runs

1000

400

200

100

0 560
Episode

22

Convergence to Global Optimum in Episodic Control

Algorithm Tabular Linear Non-linear
MC control yes chatter* no
(semi-gradient) n-step Sarsa yes chatter* no
(semi-gradient) n-step Q-learning vyes no no

*Chatters near optimal solution because optimal policy may not be representable under
value function approximation

23

Deadly Triad

Risk of divergence arises when the following three are combined:

1. Function approximation
2. Bootstrapping
3. Off-policy learning

Possible fixes:

e Use importance sampling to warp off-policy distribution into on-policy
distribution

e Use gradient TD methods which follow true gradient of projected Bellman error
(see book)

24

Required (RL book):

e Chapter 9 (91-9.5)
(Box “Proof of Convergence of Linear TD(0)" in Sec 9.4 is not examined)

e Chapter 10 (10.1)
e Chapter 11 (111)

Optional:
e Remaining sections of chapters

e Tsitsiklis, J. N., Van Roy, B. (1997). An analysis of temporal-difference learning with
function approximation. IEEE Transactions on Automatic Control, 42(5):674-690

e Mahadevan, S. (1996). Average reward reinforcement learning: Foundations,

algorithms, and empirical results. Machine Learning, 22(1):159-196 .

