Reinforcement Learning

Value Function Approximation

Stefano V. Albrecht, Michael Herrmann
16 February 2024
Lecture Outline

- Curse of dimensionality and generalisation
- Value function approximation
- Stochastic gradient descent
- Linear value functions and feature construction
- Semi-gradient TD control
Curse of Dimensionality

Theory so far has assumed:

- **Unlimited space**: can store value function as table
- **Unlimited data**: many (infinite) visits to all state-action pairs

In practice these assumptions are usually violated, because...

Curse of Dimensionality:

- Number of states grows *exponentially* with number of state variables
- If state described by k variables with values in $\{1, \ldots, n\}$, then $O(n^k)$ states

Go: 10^{170} states

Hydrogen atoms: 10^{80}
Compact Value Functions and Generalisation

Two problems...

Tabular \(v(s) / q(s; a) \) use storage proportional to \(|S| \)

Need compact representation of value function
(But sometimes can be enough to store only partial value function; e.g. MCTS)

No data (or not enough data) to estimate return in each state

Many states may never be visited

Need to generalise observations to unknown state-action pairs.
Compact Value Functions and Generalisation

Two problems...

Not enough memory to store value function as table

- Tabular $v(s)/q(s, a)$ use storage proportional to $|S|
- Need compact representation of value function
 (But sometimes can be enough to store only partial value function; e.g. MCTS)
Compact Value Functions and Generalisation

Two problems...

Not enough memory to store value function as table

- Tabular $v(s)/q(s, a)$ use storage proportional to $|S|$
- Need **compact representation** of value function

 (But sometimes can be enough to store only partial value function; e.g. MCTS)

No data (or not enough data) to estimate return in each state

- Many states may never be visited
- Need to **generalise observations** to unknown state-action pairs
Generalisation

Blue circle must move to red goal
- Agent uses optimal policy (shortest path)

Suppose we have return estimates (steps to go) for locations S_1–S_6
- e.g. $v(S_5) = -3$, $v(S_4) = -6$, $v(S_2) = -31$

We have no data for locations S_7 and S_8 (not visited yet)
- Can we estimate $v(S_7)$ and $v(S_8)$ based on other return estimates?
Value Function Approximation

Replace tabular value function with parameterised function:

\[\hat{v}(s, w) \approx v_{\pi}(s) \]
\[\hat{q}(s, a, w) \approx q_{\pi}(s, a) \]

\(w \in \mathbb{R}^d \) is parameter ("weight") vector
e.g. linear function, neural network, regression tree, ...

- **Compact**: number of parameters \(d \) much smaller than \(|S|\)
- **Generalises**: changing one parameter value may change value estimate of many states/actions
Learning a value function is a form of \textit{supervised learning}:

Examples are pairs of states and return estimates, \((S_t, U_t)\), e.g.

- MC: \(U_t = G_t\)
- TD(0): \(U_t = R_{t+1} + \gamma \hat{V}(S_{t+1}, w_t)\)
- n-step TD: \(U_t = R_{t+1} + \cdots + \gamma^{n-1}R_{t+n} + \gamma^n \hat{V}(S_{t+n}, w_{t+n-1})\)
Desired properties in supervised learning method:

- **Incremental updates**

 update w using only partial data, e.g. most recent (S_t, U_t) or subset
Desired properties in supervised learning method:

- **Incremental updates**
 update w using only partial data, e.g. most recent (S_t, U_t) or subset

- **Ability to handle noisy targets**
 e.g. different MC updates G_t for same state S_t
Desired properties in supervised learning method:

- **Incremental updates**
 - update w using only partial data, e.g. most recent (S_t, U_t) or subset

- **Ability to handle noisy targets**
 - e.g. different MC updates G_t for same state S_t

- **Ability to handle non-stationary targets**
 - e.g. changing target policy, bootstrapping

\Rightarrow If \hat{v}/\hat{q} differentiable, **stochastic gradient descent** is suitable method
Gradient Descent

- Let $J(w)$ be differentiable function of w
- Gradient of $J(w)$ is
 \[
 \nabla J(w) = \left(\frac{\partial J(w)}{\partial w_1}, \ldots, \frac{\partial J(w)}{\partial w_d} \right)^\top
 \]
- To find local minimum of $J(w)$, adjust w in negative direction of gradient
 \[
 w_{t+1} = w_t - \frac{1}{2} \alpha \nabla J(w_t)
 \]
- α is step-size parameter
 convergence requires standard α-reduction
Objective: find parameter vector w by minimising *mean-squared error* between approximate value $\hat{v}(s, w)$ and true value $v_\pi(s)$

$$J(w) = \mathbb{E}_\pi [(v_\pi(s) - \hat{v}(s, w))^2]$$
Objective: find parameter vector \mathbf{w} by minimising mean-squared error between approximate value $\hat{v}(s, \mathbf{w})$ and true value $v_\pi(s)$

$$J(\mathbf{w}) = \mathbb{E}_\pi \left[(v_\pi(s) - \hat{v}(s, \mathbf{w}))^2 \right]$$

• Gradient descent finds local minimum:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{1}{2} \alpha \nabla J(\mathbf{w}_t)$$

$$= \mathbf{w}_t + \alpha \mathbb{E}_\pi [(v_\pi(s) - \hat{v}(s, \mathbf{w}_t)) \nabla \hat{v}(s, \mathbf{w}_t)]$$
Stochastic Gradient Descent

Objective: find parameter vector \mathbf{w} by minimising *mean-squared error* between approximate value $\hat{v}(s, \mathbf{w})$ and true value $v_\pi(s)$

$$J(\mathbf{w}) = \mathbb{E}_\pi [(v_\pi(s) - \hat{v}(s, \mathbf{w}))^2]$$

- Gradient descent finds local minimum:
 $$\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{1}{2} \alpha \nabla J(\mathbf{w}_t)$$
 $$= \mathbf{w}_t + \alpha \mathbb{E}_\pi [(v_\pi(s) - \hat{v}(s, \mathbf{w}_t)) \nabla \hat{v}(s, \mathbf{w}_t)]$$

- **Stochastic** gradient descent *samples* the gradient:
 $$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [U_t - \hat{v}(S_t, \mathbf{w}_t)] \nabla \hat{v}(S_t, \mathbf{w}_t)$$
Stochastic Gradient Descent — Convergence

Stochastic gradient descent samples the gradient:

$$w_{t+1} = w_t + \alpha [U_t - \hat{V}(S_t, w_t)] \nabla \hat{V}(S_t, w_t)$$ \hspace{1cm} (1)
Stochastic gradient descent samples the gradient:

\[\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [U_t - \hat{v}(S_t, \mathbf{w}_t)] \nabla \hat{v}(S_t, \mathbf{w}_t) \quad (1) \]

- \(\mathbf{w}_t \) will converge to local optimum under standard \(\alpha \)-reduction and if \(U_t \) is unbiased estimate \(\mathbb{E}_\pi [U_t|S_t] = v_\pi (S_t) \)

\(\Rightarrow \) MC update is unbiased but TD update is biased (why?)
Stochastic gradient descent samples the gradient:

$$w_{t+1} = w_t + \alpha [U_t - \hat{v}(S_t, w_t)] \nabla \hat{v}(S_t, w_t)$$ (1)

- w_t will converge to local optimum under standard α-reduction and if U_t is unbiased estimate $E_\pi[U_t|S_t] = v_\pi(S_t)$
 - MC update is unbiased but TD update is biased (why?)

- Note: (1) is not a true TD gradient because U_t also depends on w

$$U_t = R_{t+1} + \gamma \hat{v}(S_{t+1}, w)$$

Hence, we call it semi-gradient TD
Semi-gradient TD(0) for Policy Evaluation

Input: the policy π to be evaluated
Input: a differentiable function $\hat{v} : S^+ \times \mathbb{R}^d \to \mathbb{R}$ such that $\hat{v}(\text{terminal}, \cdot) = 0$
Algorithm parameter: step size $\alpha > 0$
Initialize value-function weights $w \in \mathbb{R}^d$ arbitrarily (e.g., $w = 0$)

Loop for each episode:
 Initialize S
 Loop for each step of episode:
 Choose $A \sim \pi(\cdot | S')$
 Take action A, observe R, S'
 $w \leftarrow w + \alpha \left[R + \gamma \hat{v}(S', w) - \hat{v}(S, w) \right] \nabla \hat{v}(S, w)$
 $S \leftarrow S'$
 until S is terminal
Linear value function approximation:

\[\hat{v}(s, \mathbf{w}) = \mathbf{w}^\top \mathbf{x}(s) = \sum_{i=1}^{d} w_i x_i(s) \]

- \(\mathbf{x}(s) = (x_1(s), ..., x_d(s))^\top \) is feature vector of state \(s \)

- Simple gradient: \(\nabla \hat{v}(s, \mathbf{w}) = \left(\frac{\partial \mathbf{w}^\top \mathbf{x}}{\partial w_1}, \ldots, \frac{\partial \mathbf{w}^\top \mathbf{x}}{\partial w_d} \right)^\top = \mathbf{x}(s) \)

- Gradient update: \(w_{t+1} = w_t + \alpha [U_t - \hat{v}(S_t, w_t)] \mathbf{x}(S_t) \)
Linear value function approximation:

\[\hat{V}(s, w) = w^T x(s) = \sum_{i=1}^{d} w_i x_i(s) \]

- \(x(s) = (x_1(s), ..., x_d(s))^T \) is feature vector of state \(s \)
- Simple gradient: \(\nabla \hat{V}(s, w) = \left(\frac{\partial w^T x}{\partial w_1}, \ldots, \frac{\partial w^T x}{\partial w_d} \right)^T = x(s) \)
- Gradient update:
 \[w_{t+1} = w_t + \alpha [U_t - \hat{V}(S_t, w_t)] x(S_t) \]

In linear case, there is only one optimum!
⇒ MC gradient updates converge to global optimum
⇒ TD gradient updates converge near global optimum (TD fixed point)
Feature Vectors

Remember:
State must be Markov
Exact representation:

\[x(s) = \begin{pmatrix} \text{x-pos}(s) \\ \text{y-pos}(s) \end{pmatrix} \]

Generalise with state aggregation:

- Partition states into disjoint sets \(S_1, S_2, \ldots \) with indicator functions \(x_k(s) = [s \in S_k]_1 \)

\[x(s) = \begin{pmatrix} \text{in-S1}(s) \\ \text{in-S2}(s) \\ \text{in-S3}(s) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \]
State Aggregation

Exact representation:

\[x(s) = \left(\begin{array}{c} x\text{-pos}(s) \\ y\text{-pos}(s) \end{array} \right) \]

Generalise with state aggregation:

- Partition states into disjoint sets \(S_1, S_2, \ldots \)
 with indicator functions \(x_k(s) = [s \in S_k] \)

Special case: every state \(s \) has its own set \(S_s = \{ s \} \)

\[\Rightarrow \text{Same as tabular representation!} \]
State aggregation generalises only within sets S_1, S_2, \ldots

- Allow generalisation \emph{across} sets by allowing S_k to overlap
- E.g. coarse coding and tile coding
Example: Random Walk

- States: numbered 1 to 1000, start at state 500
- Policy: randomly jump to one of 100 states to left, or one of 100 states to right
- If jump goes beyond 1/1000, terminates with reward $-1/+1$
- State aggregation: 10 groups of 100 states each
After 100,000 episodes with $\alpha = 2 \times 10^{-5}$
Approximate Control in Episodic Tasks

- Estimate state-action values: \(\hat{q}(s, a, w) \approx q_\pi(s, a) \)
- For linear approx., features defined over states and action:

\[
\hat{q}(s, a, w) = \sum_{i=1}^{d} w_i x_i(s, a)
\]

- Stochastic gradient descent:

\[
w_{t+1} = w_t + \alpha [U_t - \hat{q}(S_t, A_t, w_t)] \nabla \hat{q}(S_t, A_t, w_t)
\]
Approximate Control in Episodic Tasks

- Estimate state-action values: \(\hat{q}(s, a, w) \approx q_\pi(s, a) \)

- For linear approx., features defined over states and action:
 \[
 \hat{q}(s, a, w) = \sum_{i=1}^{d} w_i x_i(s, a)
 \]

- Stochastic gradient descent:
 \[
 w_{t+1} = w_t + \alpha [U_t - \hat{q}(S_t, A_t, w_t)] \nabla \hat{q}(S_t, A_t, w_t)
 \]

 e.g. **Sarsa**: \(U_t = R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}, w_t) \)

 Q-learning: \(U_t = R_{t+1} + \gamma \max_a \hat{q}(S_{t+1}, a, w_t) \)

 Expected Sarsa: \(U_t = R_{t+1} + \gamma \sum_a \pi(a|S_{t+1}) \hat{q}(S_{t+1}, a, w_t) \)
Episodic Semi-gradient Sarsa

Input: a differentiable action-value function parameterization $\hat{q} : S \times A \times \mathbb{R}^d \to \mathbb{R}$
Algorithm parameters: step size $\alpha > 0$, small $\varepsilon > 0$
Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop for each episode:
$S, A \leftarrow$ initial state and action of episode (e.g., ε-greedy)
Loop for each step of episode:
Take action A, observe R, S'
If S' is terminal:
$\mathbf{w} \leftarrow \mathbf{w} + \alpha [R - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})$
Go to next episode
Choose A' as a function of $\hat{q}(S', \cdot, \mathbf{w})$ (e.g., ε-greedy)
$\mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{q}(S', A', \mathbf{w}) - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})$
$S \leftarrow S'$
$A \leftarrow A'$
Example: Mountain Car with Linear Semi-Gradient Sarsa

 STATES:
car's position and velocity

 ACTIONS:
three thrusts: forward, reverse, none

 REWARDS:
always −1 until car reaches the goal

 Episodic, No Discounting, $\gamma = 1$

Semi-gradient Sarsa with linear approximation over 8 8x8 tilings
$\epsilon = 0$ (optimistic initial values $\hat{q}(s, a, w) = 0$)
Learned Action Values in Mountain Car

Cost-to-go:
\[- \max_a \hat{q}(s, a, w)\]
Mountain Car
Steps per episode log scale averaged over 100 runs

- $\alpha = 0.1/8$
- $\alpha = 0.2/8$
- $\alpha = 0.5/8$
Convergence to Global Optimum in Episodic Control

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Tabular</th>
<th>Linear</th>
<th>Non-linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC control</td>
<td>yes</td>
<td>chatter*</td>
<td>no</td>
</tr>
<tr>
<td>(semi-gradient) n-step Sarsa</td>
<td>yes</td>
<td>chatter*</td>
<td>no</td>
</tr>
<tr>
<td>(semi-gradient) n-step Q-learning</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Chatters near optimal solution because optimal policy may not be representable under value function approximation
Deadly Triad

Risk of divergence arises when the following three are combined:

1. Function approximation
2. Bootstrapping
3. Off-policy learning

Possible fixes:

- Use importance sampling to warp off-policy distribution into on-policy distribution
- Use gradient TD methods which follow true gradient of projected Bellman error (see book)
Required (RL book):

- Chapter 9 (9.1–9.5)
 (Box “Proof of Convergence of Linear TD(0)” in Sec 9.4 is not examined)
- Chapter 10 (10.1)
- Chapter 11 (11.1)

Optional:

- Remaining sections of chapters