
RL 2023/2024 Coursework

Submission deadline: 12:00 pm (noon) on 29 March, 2024

February 13, 2024

1 Introduction

The goal of this coursework is to implement different reinforcement learning algorithms covered in
the lectures. By completing this coursework, you will get first-hand experience on how different
algorithms perform in different decision-making problems.

Throughout this coursework, we will refer to lecture slides for your understanding and give page
numbers to find more information in the RL textbook (“Reinforcement Learning: An Introduction
(2nd edition)” by Sutton and Barto, http://www.incompleteideas.net/book/RLbook2020.pdf).

As stated in the course prerequisites, we do expect students to have a good understanding of
Python programming, and of course any material covered in the lectures is the core foundation to
work on this coursework. Many tutorials on Python can be found online.

We encourage you to start the coursework as early as possible to have sufficient time to ask
any questions.

2 Contact

Piazza Please post questions about the coursework in the Piazza forum to allow everyone to view
the answers in case they have similar questions. We provide different tags/folders in Piazza
for each question in this coursework. Please post your questions using the appropriate tag
to allow others to easily read through all the posts regarding a specific question.

Lab sessions There will also be lab sessions in person, during which you can ask questions about
the coursework. We highly recommend attending these sessions, especially if you have ques-
tions about PyTorch and the code base we use. The lab sessions schedule can be accessed at
this link.

Note Please keep in mind that Piazza questions and lab sessions are public for discussions. Given
that this coursework is individual work and graded, please do not disclose or discuss any
information which could be considered a hint towards or part of the solution to any of the
questions. However, you can ask and we encourage any questions about instructions that
are unclear to you, questions generally asking about algorithms (disconnected from their
implementation) and concepts. Please, always ask yourself prior to posting whether you
believe your question in itself discloses implementation details or might provoke answers
disclosing such information.

We understand that Piazza is a very valuable place to discuss many matters on this course
between students and teaching staff, but also between students. We are committed to make
this exchange as simple and effective as possible and hope you keep these boundaries in mind
about questions regarding the coursework.

1

http://www.incompleteideas.net/book/RLbook2020.pdf
https://www.ted.is.ed.ac.uk/UOE2324_SWS/ShowTimetable.aspx

3 Getting Started

To get you started, we provide a repository of code to build upon. Each question specifies which
sections of algorithms you are expected to implement and will point you to the respective files.

1. Installing Anaconda
We recommend using Anaconda to manage your Python installation and required packages
for this course. First navigate to the Anaconda download page and follow the installation
instructions related to your operating system. Anaconda (sometimes shortened to “conda”)
supports Linux, MacOS, and Windows.

2. Creating a conda environment
Creating an environment with conda is easy. Within a terminal session, use the conda

create command, name your environment with the -n flag, and choose your Python version
with python= as in the following example:

conda create -n rl_course python =3.7

Then, enter into your new conda environment with the conda activate command as in the
following example:

conda activate rl_course

3. Download the code base to get started
Finally, execute the following command to download the code base:

git clone https :// github.com/uoe -agents/uoe -rl2024 -

coursework.git

Navigate into the coursework folder with cd uoe-rl2024-coursework. Within the directory,
you should see a file called setup.py. This file contains a list of the libraries required to
complete your coursework under the name install_requires. To install these packages
within your conda environment, execute the following command:

pip install -e .

For detailed instructions on Python’s library manager pip, see the official Python guide.

2

https://www.python.org
https://www.anaconda.com/download
https://docs.conda.io/projects/conda/en/23.9.x/commands/create.html
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/

4 Overview

The coursework contains a total of 100 marks and counts towards 50% of the course grade.
Below you can find an overview of the coursework questions and their respective marks. More
details on required algorithms, environments and required tasks can be found in Section 5. Sub-
missions will be marked based on correctness and performance as specified for each question. In
Questions 2, 3 and 5, some marks are given based on a short write-up or an answer to a multiple-
choice question. When relevant, you will be instructed to provide these answers as the output of
a dedicated function in the answer sheet.py script located at the root of the rl2024 directory
(refer to Figure 6 for a breakdown of the folder structure). Details on marking can be found in
Section 6 and Section 7 presents instructions on how to submit the required assignment files.

Question 1 – Dynamic Programming [15 Marks]

• Implement the following DP algorithms for MDPs

– Value Iteration [7.5 Marks]

– Policy Iteration [7.5 Marks]

Question 2 – Tabular Reinforcement Learning [20 Marks]

• Implement ϵ-greedy action selection [2 Marks]

• Implement the following RL algorithms

– Q-Learning [7 Marks]

– On-policy first-visit Monte Carlo [7 Marks]

• Analyse performance of different hyperparameters in FrozenLake8x8-v1 [4 Marks]

Question 3 – Deep Reinforcement Learning [32 Marks]

• Implement the following Deep RL algorithms

– Deep Q-Networks [6 Marks]

– REINFORCE [9 Marks]

• Reinforce performance analysis [2 Marks]

• DQN performance analysis

– Implement ϵ-scheduling strategies [4 Marks]

– Select best hyperparameter profiles [2 Marks]

– Answer questions on ϵ-scheduling [4 Marks]

• Answer questions related to the DQN loss during training [5 Marks]

Question 4 – Continuous Deep Reinforcement Learning [18 Marks]

• Implement DDPG for continuous RL [13 Marks]

• Tune the specified hyperparameters to solve Racetrack [5 Marks]

Question 5 – Fine-tuning the Algorithms [15 Marks]

• Tune all hyperparameters to maximise score on Racetrack [10 Marks]

• Explain how the above hyperparameter are selected [5 Marks]

3

5 Questions

Question 1 – Dynamic Programming [15 Marks]

Description

The aim of this question is to provide you with better understanding of dynamic programming
approaches to find optimal policies for Markov Decision Processes (MDPs). Specifically, you are
required to implement the Policy Iteration (PI) and Value Iteration (VI) algorithms.

For this question, you are only required to provide implementation of the necessary
functions. For each algorithm, you can find the functions that you need to implement under
Tasks below. Make sure to carefully read the code documentation to understand the input and
required outputs of these functions. We will mark your submission only based on the correctness
of the outputs of these functions.

Algorithms

1. Policy Iteration (PI):
You can find more details including pseudocode in the RL textbook on page 80. Also see
Lecture 4 on dynamic programming (pseudocode on slide 17).

2. Value Iteration (VI):
You can find more details including pseudocode in the RL textbook on page 83. Also see
Lecture 4 on dynamic programming (pseudocode on slide 22).

Domain

In this exercise, we train dynamic programming algorithms on MDPs. We provide you with
functionality which enables you to define your own MDPs for testing. For an example on how
to use these functions, see the main function at the end of exercise1/mdp solver.py where the
”Frog on a Rock“ MDP from the tutorials shown in Figure 1 is defined and given as input to the
training function with γ = 0.85.

Figure 1: Frog on a Rock example MDP for Exercise 1

As a side note, our interface for defining custom MDPs requires all actions to be valid over
all states in the state space. Therefore, remember to include a probability distribution over next
states for every possible state-action pair to avoid any errors from the interface.

Tasks

Use the code base provided in the directory exercise1 and implement the following functions.

1. Value Iteration [7.5 Marks]
To implement the Value Iteration algorithm, you must implement the following functions in
the ValueIteration class:

• calc value func, which must calculate the value function (table).

• calc policy, which must return the greedy deterministic policy given the calculated
value function.

4

http://www.incompleteideas.net/book/RLbook2020.pdf#page=102
https://opencourse.inf.ed.ac.uk/sites/default/files/https/opencourse.inf.ed.ac.uk/rl/2024/rl4dynamicprogramming.pdf
http://www.incompleteideas.net/book/RLbook2020.pdf#page=105
https://opencourse.inf.ed.ac.uk/sites/default/files/https/opencourse.inf.ed.ac.uk/rl/2024/rl4dynamicprogramming.pdf

2. Policy Iteration [7.5 Marks]
To implement the Policy Iteration algorithm, you must implement the following functions in
the PolicyIteration class:

• policy eval, which must calculate the value function of the current policy.

• policy improvement, which must return an improved policy and terminate if the policy
is stable (hint: this function will need to call policy eval).

Aside from the aforementioned functions, the rest of the code base for this question must be
left unchanged. A good starting point for this question would be to read the code base and the
documentations to get a better grasp how the entire training process works.

Directly run the file mdp solver.py to print the calculated policies for VI and PI for a test
MDP. Feel free to tweak or change the MDP and make sure it works consistently.

This question does not require a lot of effort to complete and you can provide a correct imple-
mentation with less than 50 lines of code. Additionally, training the method should require less
than a minute of running time.

5

Question 2 – Tabular Reinforcement Learning [20 Marks]

Description

The aim of the second question is to provide you with practical experience on implementing model-
free reinforcement learning algorithms with tabular Q-functions. Specifically, you are required to
implement the Q-Learning and on-policy first-visit Monte Carlo algorithms.

For all algorithms, you are required to provide implementations of the necessary
functions. You can find the functions that you need to implement below. Make sure to carefully
read the documentation of these functions to understand their input and required outputs. We will
mark your submission based on the correctness of the outputs of the required functions,
the performance of your learning agents measured by the average returns on the
FrozenLake8x8-v1 environment, and the answers you’ve provided in answer sheet.py.

Algorithms

1. Q-Learning (QL):
You can find more details including pseudocode for QL in the RL textbook on page 131.
Also see Lecture 6 on Temporal Difference learning (slide 19).

2. First-visit Monte Carlo (MC):
You can find more details including pseudocode for on-policy first-visit MC with ϵ-soft policies
in the RL textbook on page 101. Also see Lecture 5 on MC methods (slide 17).

Domain

In this question, we train agents on the Gymnasium FrozenLake8x8-v1 environment. This envi-
ronment is a simple task where the goal of the agent is to navigate across a frozen lake without
falling into any holes in the ice in a grid-world.

Figure 2: Rendering of two FrozenLake8x8-v1 environment steps

The episode terminates once the agent reaches the goal location, the agent falls in a hole or at a
maximum episode length. The agent will be given a reward of +1 for successfully reaching the goal,
and a reward of 0 otherwise. The frozen lake is slippery, so the agent will move in the intended
direction with probability 1

3 , otherwise it will move perpendicular to the intended direction (with
equal probability of 1

3 in both directions). Hence, the task consists of learning to navigate the
slippery grid-world to reach the goal location without falling into a hole.

A good hyperparameter scheduling for both algorithms should enable the agent to solve the
FrozenLake8x8-v1 environment. We consider the environment to be solved when the agent
can consistently achieve an average return of ≥ 0.6.

Tasks

For this exercise, you are required to implement the functions listed below. Besides the correctness
of these functions, we will also mark the performance achieved by your agents with the hyperpa-
rameters we provide in the FrozenLake8x8-v1 environment. See each paragraph below for more
details on required functions and respective marks.

Implementation [14 Marks]
Use the code base provided in the directory exercise2 and implement the following functions. All
the functions that you need to implement for the three algorithms are located in the agents.py

file. Both algorithms to implement extend the Agent class provided in the script.

6

http://www.incompleteideas.net/book/RLbook2020.pdf#page=153
https://opencourse.inf.ed.ac.uk/sites/default/files/https/opencourse.inf.ed.ac.uk/rl/2024/rl6temporaldifferencelearning.pdf
http://www.incompleteideas.net/book/RLbook2020.pdf#page=123
https://opencourse.inf.ed.ac.uk/sites/default/files/https/opencourse.inf.ed.ac.uk/rl/2024/rl5montecarlomethods.pdf
https://gymnasium.farama.org/environments/toy_text/frozen_lake/

1. Base class [2 Marks]
In the Agent class, implement the following function:

• act, where you must implement the ϵ-greedy exploration policy used by the QL and
MC algorithms.

2. Q-Learning [6 Marks]
To implement QL, you must implement the following functions in the QLearningAgent class:

• learn, where you must implement Q-value updates.

3. On-policy first-visit Monte Carlo [6 Marks]
To implement the MC with ϵ-soft policy algorithm, you must implement the following func-
tions in the MonteCarloAgent class:

• learn, where you must implement the first-visit MC Q-value updates.

Note: All other functions apart from the aforementioned ones should not be changed. All func-
tions could be implemented with around 20 lines of code or less. We implemented a hyperparameter
scheduler for ϵ in the file exercise2/agents.py, do not change the schedule hyperparameters

functions.

Testing

You can find the training script for QL and MC on FrozenLake8x8-v1 in train q learning.py

and train monte carlo.py respectively. These execute training and evaluation using your imple-
mented agents.

Hyperparameters and Performance [6 Marks]

Besides correctness of the action selection and learning functions, we also ask you to tune
different hyperparameters of your QL and MC agents. As you will see, the performance of RL
algorithms is highly dependent on the choices of hyperparameter values, and we hope the following
questions help you build some intuition for selecting them. For this question, we will only ask you
to collect and analyse the evaluation returns of the two algorithms with different hyperparameter
combinations. In the following Table 1, we provide two hyperparameter profiles for each algorithm.
You can set the values of these hyperparameters through the CONFIG in train q learning.py and
train monte carlo.py. In util/result processing.py we have provided the class Run that
may be used to log data across runs. You are welcome to use it during your experiments (or to
expand it or replace it by any method or framework you see fit). Please run your implementation
with the hyperparameter profiles we provide, and record the corresponding evaluation returns.
We recommend running at least 10 seeds per hyperparameter configuration for statistical
consistency.

Note that the best evaluation return of a correct implementation will be ≥ 0.6 with
one of the hyperparameter profiles provided in Table 1 and correct implementations, for both
algorithms.

Algorithm α ϵ γ Algorithm ϵ γ

Q-Learning
0.05 0.9 0.99

First-visit Monte Carlo
0.9 0.99

0.05 0.9 0.8 0.9 0.8

Table 1: The given hyperparameter profiles for QL and MC in the FrozenLake8x8-v1 environ-
ment.

Analyse the evaluation returns obtained by the above hyperparameter profiles, and answer the
following questions in answer sheet.py:

i) question2 1 for the QL algorithm, which value of γ leads to the best average evaluation
return?
[1 Marks]

ii) question2 2 for the first-visit MC algorithm, which value of γ leads to the best average
evaluation return?
[1 Marks]

7

iii) question2 3 between the two algorithms (QL / MC), whose average evaluation return is
impacted by the above factor in a greater way? [1 Marks]

iv) question2 4 provide a short explanation (< 100 words) as to why the value of γ affects more
the evaluation returns achieved by [Q-learning / First-Visit Monte Carlo] when compared to
the other algorithm. [3 Marks]

Note: there exist hyperparameter combinations that achieve higher scores than the ones provided,
and we encourage keen students to search for better ones as an exercise. However, you will not get
extra marks for doing so in this question or in Question 3. You will get no marks for reporting
a hyperparameter profile that is not among the ones proposed. Likewise, make sure the other
hyperparameters are set to their default values for that environment, which are provided in
EX2 CONSTANTS in constants.py. During our evaluation, we will use the original constants.py
to overwrite the same file in your submission. Therefore, any change in constants.py will be
ineffective.

8

Question 3 – Deep Reinforcement Learning [32 Marks]

Description

In this question you are required to implement two Deep Reinforcement Learning algorithms:
DQN [2] and REINFORCE [4] with function approximation.

In this task, you are required to implement functions associated with the training
process, action selection along with gradient-based updates done by each agent. Aside
from these functions, many components of the training process, along with the primary training
setup have already been implemented in our code base. Below, you can find a list of functions that
need to be implemented. Make sure to carefully read the documentation of functions you must
implement to understand the inputs and required outputs of each component. We will mark your
submission based on the correctness of the functions you’ve implemented, along with the
answers associated with this question you’ve provided in answer sheet.py.

Algorithms

Before you start implementing your solutions, we recommend reading the original papers and
looking at lectures and textbooks to provide you with better understanding of the details of both
algorithms.

1. Deep Q-Networks (DQN):
DQN is one of the earliest Deep RL algorithms, which replaces the usual Q-table used
in Q-Learning with a neural network to scale Q-Learning to problems with large or con-
tinuous state spaces. You can find more details including pseudocode for DQN in the
Nature publication [2]. Also see Lecture 12 on deep RL (pseudocode on slide 17).

2. REINFORCE:
REINFORCE is an on-policy algorithm which learns a stochastic policy with gradient updates
being derived by the policy gradient theorem (see Lecture 11, slide 11). You can find more
details in the publication [4] and for pseudocode refer to Algorithm 1 provided below.

Domains

In this question, we train agents on the Gymnasium CartPole-v0 and MountainCar-v0 environ-
ments. CartPole is a well-known control task where the agent can move a cart left or right to
balance a pole. The goal is to learn balancing the pole for as long as possible. Episodes are lim-
ited in length and terminate early whenever the pole tilts beyond a certain degree. The agent is
rewarded for each timestep it achieves to maintain the pole in balance.

In MountainCar, the agent controls a car that spawns in a random location at the bottom of
a valley. In the discrete version of this environment, the agent can either accelerate the car left or
right. Rewards in MountainCar are based on how close the car is to the goal flag (see right side of
Figure 3).

Figure 3: Rendering of the CartPole (left) and MountainCar (right) environments

Tasks

For this exercise, you are required to implement the functions listed below. Besides the correctness
of these functions, we will also evaluate your choice of hyperparameters for the REINFORCE agent

9

https://www.nature.com/articles/nature14236
https://opencourse.inf.ed.ac.uk/sites/default/files/https/opencourse.inf.ed.ac.uk/rl/2024/rl12deepreinforcementlearningi.pdf
https://opencourse.inf.ed.ac.uk/sites/default/files/https/opencourse.inf.ed.ac.uk/rl/2024/rl11policygradientmethods.pdf
http://papers.neurips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf
https://gymnasium.farama.org/environments/classic_control/cart_pole/
https://gymnasium.farama.org/environments/classic_control/mountain_car/

in the CartPole environment and for the DQN agent in the MountainCar environment. To simplify
the hyperparameter search, we will provide you with a range of hyperparameter profiles to pick
from.

Implementation [15 Marks]
Use the code base provided in the directory exercise3 and implement the following functions. All
of the functions which you need to implement for both algorithms are located in the
agents.py file. Both algorithms to implement extend the Agent class provided in the script.

1. DQN [6 Marks]
In agents.py, you will find the DQN class which you need to complete. For this class, imple-
ment the following functions:

• init , which creates a DQN agent. Here, you can set any hyperparameters and
initialise any values for the class you need.

• act, which implements a ϵ-greedy action selection. Aside from the observation, this
function also receives a boolean flag as input. When the value of this boolean flag is
True, agents should follow the ϵ-greedy policy. Otherwise, agents should follow the
greedy policy. This flag is useful when we interchange between training and evaluation.

• update, which receives a batch of N (batch size) experience samples from the replay
buffer. Using experiences, which are tuples in the form of < s, a, r, d, s′ > gathered from
the replay buffer, update the parameters of the value network to minimize the mean
squared error:

Lθ =
1

N

N∑
i=1

(ri + γ(1− di)maxaQ(a|s′i; θ′)−Q(ai|si; θ))
2
,

where θ and θ′ are the parameters of the value and target network, respectively. Also,
this function is required to update the target network parameters at the stated up-
date frequency by overwriting it with the current Q-network parameters θ′ ← θ (hard
update).

2. REINFORCE [9 Marks]
The functions that you need to implement for REINFORCE are also located inside the
agents.py file under the Reinforce class. For this class, provide the implementation of the
following functions:

• init , which creates the REINFORCE agent. You can set additional hyperparame-
ters and values required for training the agent here.

• act, which implements the action selection based on the stochastic policy produced by
the policy network.

• update, which updates the policy based on the sequence of experience

{< st, at, rt, dt, st+1 >}Tt=1

received by the agent during an episode. You must then implement a process that
updates the policy parameters to minimize the following function:

Lθ =
1

T

T∑
t=1

−log(π(at|st; θ))(Gt)

where θ are the parameters of the policy network, and Gt is the discounted reward-to-go
calculated starting from timestep t.

You can find the pseudocode for REINFORCE below in Algorithm 1.

All other functions apart from the aforementioned ones should not be changed. In general, all
of the required functions can be implemented with less than 20 lines of code.

10

Algorithm 1: REINFORCE: Monte-Carlo Policy Gradient

Output:
π(a|s, θ∗) : optimised parameterised policy

Input:
α : Learning rate
γ : Discount factor

Initialise:
π(a|s, θ) : Randomly initialise policy parameters θ

Loop forever (for each episode):
Generate an episode S0, A0, R1, ..., ST−1, AT−1, RT following π(·|·, θ)
Lθ ← 0 // Initialise loss to 0

G← 0 // Initialise the returns to 0

Loop backward in the episode t = T − 1, ..., 0 :
G← Rt+1 + γG
Lθ ← Lθ −G log π(At|St, θ)

Lθ ← Lθ/T
Perform a gradient step with learning rate α on Lθ with respect to θ

Testing

To test your implementation, we provide you with two scripts which execute your DQN and REIN-
FORCE implementations. You can find the scripts inside train dqn.py and train reinforce.py

to train DQN and REINFORCE, respectively. Inside these scripts, we provide you with configura-
tions that enable you to train the REINFORCE in the CartPole and DQN in both CartPole and
MountainCar environments. To better understand how your implemented functions are used in
the training process, read the code and documentation provided in these scripts. We provide the
CartPole configurations for DQN to allow you to more easily test your DQN implementation since
the CartPole environment is easier and quicker to train than MountainCar, but only MountainCar
should be used to complete the questions on DQN performance.

For a correct implementation, the training process requires less than 5 minutes to train REIN-
FORCE in CartPole, less than 2 minutes to train DQN in CartPole, and less than 30 minutes to
train DQN in MountainCar.

Hyperparameter tuning [12 Marks]

Besides correctness of the aforementioned algorithms, we also ask you to tune different hyper-
parameters of your DQN and REINFORCE agents. For this question, we will only ask you to tune
one hyperparameter at a time, and you will be provided with a number of profiles to choose from
for each parameter. To get full marks, you only need to select the best performing hyperparameter
value among the ones proposed. We will give you hints in the form of the score to expect with the
right hyperparameter choice.

There exists hyperparameter combinations that achieve higher scores than the ones provided,
and we encourage keen students to search for better ones as an exercise. However you will not get
extra marks for doing so in this question.

You will get no marks for reporting an hyperparameter value that is not among the ones pro-
posed. Likewise, make sure the other hyperparameters are set to their default values for that envi-
ronment, which are provided in CARTPOLE CONFIG in train reinforce.py and in MOUNTAINCAR CONFIG

in train dqn.py. We recommend running at least 10 seeds per hyperparameter configura-
tion for statistical consistency.

In util/result processing.py we have provided the class Run and some helper functions that
may be used to log and process your results. You are welcome to use it during your experiments
and to expand it or replace it by any method or framework you see fit.

1. REINFORCE [2 Marks]
For REINFORCE, we simply ask you to tune the learning rate in the CartPole environment.
You are not required to perform any hyperparameter tuning in MountainCar. You can find
the possible values to pick from for the learning rate in Table 2 and in train.py, under
the variable CARTPOLE HPARAMS. In question3 1 of answer sheet.py, report which learning
rate achieves the highest mean returns at the end of training.

11

Algorithm learning rate

Reinforce
2e− 2
2e− 3
2e− 4

Table 2: Provided hyperparameters for tuning the learning rate for REINFORCE in the CartPole
environment.

Epsilon decay strategy exploration fraction Epsilon decay strategy epsilon decay

Linear
0.99

Exponential
1.0

0.75 0.5
0.01 1e− 5

Table 3: Provided hyperparameters for tuning epsilon scheduling for DQN in the MountainCar
environment.

Hint: You should expect an average score of at least 180 for the best performing profile.

2. DQN [10 Marks]
We ask you to implement different epsilon scheduling strategies for DQN and tune them in
the MountainCar environment.

(a) Implementing an ϵ-scheduling strategy: When following an ϵ-greedy policy, it can
be beneficial to not keep ϵ constant but instead gradually decay it over the course of
training. In this question, you will experiment with two different decay strategies and
select hyperparameters for them. In the DQN class of agents.py, you are asked to im-
plement the following inner functions within the schedule hyperparameters function.

i. epsilon linear decay - hyperparameters [ϵstart, ϵmin, exploration fraction]:
decays ϵ linearly from some starting value ϵstart to a minimum value ϵmin. After
reaching ϵmin, ϵ remains constant. ϵ should reach ϵmin when the ratio between the
current train timestep and the maximum number of train timesteps t/tmax reaches
the value set by exploration fraction.

ii. epsilon exponential decay - hyperparameters [ϵstart, ϵmin, epsilon decay]: de-
cays ϵ exponentially such that ϵt+1 ← r

t/tmaxϵt, where r is the decay rate set by
epsilon decay. ϵ decays from some starting value ϵstart to a minimum value ϵmin.
After reaching ϵmin, ϵ remains constant.

(b) Tuning the ϵ-scheduling strategy: In train dqn.py, we have provided you with
a range of possible values for ϵ-scheduling in MountainCar (these are also reported
in Table 3). Try out the different exploration fraction values in MOUNTAINCAR -

HPARAMS LINEAR DECAY and the epsilon decay values in MOUNTAINCAR HPARAMS EXP -

DECAY, and report which profile achieves the highest mean returns achieved at the end
of training for each scheme in question3 2 and question3 3 of answer sheet.py.

Hint: You should expect an average score of at least -125 for the best performing
profile.

(c) In answer sheet.py, answer the following questions:

i) question3 4: What would the value of epsilon be at the end of training when
employing an exponential decay strategy with epsilon decay set to 1.0?

ii) question3 5: What would the value of epsilon be at the end of training when
employing an exponential decay strategy with epsilon decay set to 0.95?

iii) question3 6: Based on your answer to (c) ii), briefly explain why a decay strategy
based on an exploration fraction parameter may be more generally applicable
across different environments than a decay strategy based on a epsilon decay

parameter.

Understanding the Loss [5 Marks]
This part of the exercise will attempt to further your understanding of the loss function in DQN.
Figure 4 provides you with a plot of the DQN loss during training within a single run of CartPole
with the x-axis and y-axis corresponding to “timesteps trained” and the DQN loss, respectively.

12

0 2500 5000 7500 10000 12500 15000 17500 20000
Timesteps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

DQ
N

Lo
ss

Figure 4: DQN loss during training in the CartPole environment. Generated with the following
hyperparameters: learning rate of 0.001, a single hidden layer Q-network with 64 hidden units,
batch size of 64, target update frequency of 2000, and a buffer capacity of 1 million experiences.

You can also plot the DQN loss yourself using the provided functionality to collect and plot
the DQN loss. Simply set the "plot_loss" value within the CARTPOLE_CONFIG in train dqn.py

to True and you should receive a plot as stated at the end of training.
In machine learning, it is often expected for the value of the loss to drop during training.

However, Figure 4 shows that this does not occur in DQN! To demonstrate your understanding,
we ask you to answer the following questions in answer sheet.py.

i) question3 7: Explain why the loss is not behaving as in typical supervised learning ap-
proaches (where we usually see a fairly steady decrease of the loss throughout training).

ii) question3 8: Provide an explanation for the spikes which can be observed at regular intervals
throughout the training.

13

Question 4 – Continuous Deep Reinforcement Learning [18 Marks]

Description

So far, we implemented algorithms such as DQN and REINFORCE which define value functions
and policies, respectively, for discrete actions, i.e. each action in a state is assigned a specific
value or action selection probability. However, in some problems such as control in robotics there
might be continuous actions, e.g. representing force which is applied by a motor. To be able to
learn policies for such continuous action spaces, we need different RL techniques. The goal of
this question is to provide you with experience on (deep) RL algorithms which can be applied
in such continuous action spaces. To achieve this aim, you are required to implement the Deep
Deterministic Policy Gradient (DDPG) [1] algorithm and train it to solve the Racetrack
control task.

Algorithm

Deep Deterministic Policy Gradient (DDPG) [1] is building on top of Deterministic Policy Gradient
(DPG) [3] and extending this RL algorithm for continuous action spaces with function approxima-
tors. We highly recommend reading the DDPG paper in addition to lecture materials to familiarise
yourself with the algorithm. In contrast to discrete action environments, where an action is a scalar
integer, the action in continuous action environments is an N-dimensional vector where, N is the
dimension of the action space. Therefore, the Q-network in DDPG outputs a value estimate given
a state and action, in contrast to just receiving a state in DQN. Additionally, the action space
usually has an upper and a lower bound.

For example, imagine a car with two-dimensional action space, throttle and turn, where throttle
takes values in [−1, 1], and turn takes values in [−45, 45]. At each time step, the controlled agent
should return a two-dimensional action, where the first element represents the throttle and should
be in the range of [−1, 1], and the second element represents the turn and therefore should be in
the range of [−45, 45].

Please note that an epsilon-greedy policy, which was applied in DQN, cannot be applied in
continuous action environments, because the number of possible actions are infinite. Instead, we
add Gaussian noise N to actions chosen by the deterministic policy µ to explore.

a = µ(s) + η

η ∼ N (m,σ)

For this exercise, we consider that the noise is a Gaussian function with mean m = 0 and standard
deviation σ = 0.1I for identity matrix I.

Using a batch of N experiences, which are tuples in the form of < s, a, r, d, s′ > gathered from
the replay buffer, update the parameters of the critic network to minimize the mean squared error:

Lθ =
1

N

N∑
i=1

(ri + γ(1− di)Q (s′i, µ(s
′
i;ϕ

′); θ′)−Q(si, ai; θ))
2
,

where θ and θ′ are the parameters of the critic and target critic network, respectively, and ϕ′ are
the parameters of the target actor network. Using the same batch, implement and minimise the
mean squared deterministic policy gradient error to update the parameters of the actor:

Lϕ =
1

N

N∑
i=1

−Q(si, µ(si;ϕ); θ)

where ϕ are the parameters of the actor’s network. The gradient flows through the critic network
back to the parameters of the actor. Please note that during the update of the actor’s
parameters, the parameters of the critic network should remain fixed and not be
updated.

Domain

In this question, we ask you to train agents in the Racetrack task from the HighwayEnv environ-
ment suite. In Racetrack, the agent steers a vehicle (yellow) around a racetrack while avoiding a
collision with a computer-controlled vehicle (blue). The agent receives a positive reward for staying
within the racetrack’s lanes, and episodes terminate if a collision occurs.

14

http://highway-env.farama.org/environments/racetrack/
https://github.com/Farama-Foundation/HighwayEnv

Figure 5: Rendering of two Racetrack environment steps

Tasks

For this exercise, you are required to implement the functions listed below. Besides the correctness
of these DDPG functions, we will also mark the performance achieved by your DDPG agent in
the Racetrack. See each paragraph below for more details on required functions, performance
thresholds, and respective marks.

Implementation [13 Marks]
Use the code base provided in the directory exercise4 and implement the following functions. In
agents.py, you will find the DDPG class which you need to complete. For this class, implement the
following functions:

• init , which creates a DDPG agent. Here, you have to initialise the Gaussian noise. Use
the imported class from torch.distributions, Normal, to define a noise variable. During
exploration you should call the function sample() from the Normal instance. Also, you can
set any additional hyperparameters and initialise any values for the class you need.

• act, which implements the action selection method of DDPG. Aside from the observation,
this function also receives a boolean flag as input. When the value of this boolean flag is
True, agents should follow an exploratory policy using noise as specified above. Otherwise,
agents should follow the deterministic policy without any noise. This flag is useful when we
interchange between training and evaluation.

Hint: Remember to clip the action between the upper and lower bound of the action space
before returning the action.

• update, which receives a batch of experience from the replay buffer. Using a batch of experi-
ences, which are tuples in the form of < st, at, rt, dt, st+1 > gathered from the replay buffer,
update the parameters of the critic network to minimize the mean squared error:

Lθ = (r + γ(1− dt)Q(µ(st+1;ϕ
′), st+1; θ

′)−Q(at, st; θ))
2,

where θ and θ′ are the parameters of the critic and target critic network respectively, and
ϕ′ are the parameters of the target actor network. Using the same batch implement and
minimise the deterministic policy gradient error to update the parameters of the actor:

Lϕ =
1

N

N∑
i=1

−Q(si, µ(si;ϕ); θ)

where ϕ are the parameters of the actor’s network. The gradient flows through the critic
network back to the parameters of the actor. Please note, that during the update of the
actor’s parameters, the parameters of the critic network should remain fixed and not be
updated.

Also, this function is required to update the target critic and actor parameters using soft
updates at every update with step size τ .

θ′ ← (1− τ)θ′ + τθ ϕ′ ← (1− τ)ϕ′ + τϕ

15

Performance marks 0/5 3/5 5/5

DDPG < 300 < 500 ≥ 500

Table 4: Average (evaluation) returns required for given performance marks for DDPG in the
Racetrack environment.

Hyperparameter Tuning [5 Marks]
Besides correctness of the action selection and learning functions, we will also mark the performance
of your agents in the Racetrack environment. As mentioned in the previous questions, the
performance of DRL algorithms is highly dependent on the choices of hyperparameters. For this
question, we will only ask you to tune the size of hidden layers of both the critic and policy
networks. That said, we won’t tell you which size of hidden layers to try, and you have to search
yourself. The default values of all hyperparameters are provided in the in the RACETRACK CONFIG

in train ddpg.py, and you can set your own values of critic hidden size and policy hidden -

size. Please keep the other hyperparameters as they are during your fine-tuning in this question.
You will also need to provide us with saved [parameters/weights] of the critic and

policy neural networks for DDPG in Racetrack so that we can verify the performance1.
Your mark will depend on the performance of your saved agent. For marking thresholds, see
Table 4. The saved [parameters/weights] of the neural networks should be named as ‘racetrack -

latest.pt’ which is specified by the EX4 RACETRACK CONSTANTS in constants.py. Make sure that
the performance achieved by your saved parameters (saved at the end of training in train ddpg.py)
are reliable by using the evaluate ddpg.py script.

Note: Make sure the other hyperparameters are set to their default values in this exercise,
which are provided in EX4 CONSTANTS in constants.py. During our evaluation, we will use the
original constants.py to overwrite the same file in your submission. Therefore, any change in
constants.py will be ineffective.

1The saved parameters/weights of a model is also known as a “checkpoint”.

16

Question 5 – Fine-tuning the Algorithms [15 Marks]

Description

We mentioned several times in the pervious question descriptions that the selection of hyperpa-
rameter values greatly impact the performance of (deep) RL algorithms. In this question, you are
required to implement a hyperparameter tuning method. The goal of this question is to pro-
vide you with experience on fine-tuning the hyperparameters for DRL algorithms. Below, you can
find a brief description of the two hyperparameter search methods, and the functions you need to
implement. Make sure to carefully read the documentation of these functions to understand their
input and required outputs. We will mark your submission based on the performance of your
learning agents measured by the average evaluation returns (10 marks) as well as how you select
the hyperparameter values used to train your agents (5 marks), in the Racetrack environment.

Algorithm

For this question, we use the DDPG algorithm introduced in Question 4. Please read the Algo-
rithm section of Question 4 for more details about the DDPG algorithm.

Domain

In this question, we also ask you to train agents in the Racetrack task from the HighwayEnv
environment suite, as in Question 4. For a short description of the environment, please read the
Domain section of Question 4 again.

Tasks

For this question, you are required to achieve a much higher reward than required in Question
4. Achieving the scores listed in Table 5 will require an extensive search of the hyperparameter
space, and therefore we highly recommend you to use/implement a systematic hyperparameter
search method. You are free to use any hyperparameter searching technique you see fit, and
we won’t mark its implementation. Instead, we will only mark your submission in the Bipedal-
Walker environment based on: i) the performance of your learning agents measured by the average
evaluation returns of the model you submit (10 marks); ii) how you select the hyperparameters
used to train your agents (5 marks).

To help you establish a rough idea about how to sweep the hyperparameters, we briefly illustrate
two common hyperparameter sweeping methods below:

• grid search iterates over all combinations of the hyperparameter values. Suppose there are
two hyperparameters a ∈ {1, 2} and b ∈ {2, 3}, then grid search will iterate over the set a×b =
{(1, 2), (1, 3), (2, 2), (2, 3)}. This method is computationally infeasible if a hyperparameter
has infinitely many possible values without discretising the parameter value domains.

• random search, as its name suggests, randomly picks up a combination of hyperparameters
at each iteration. For different types of hyperparameters, you can specify different types
of distributions. For example, for a discrete value, you can specify arbitrary categorical
distributions for the sweeper to sample from. If a hyperparameter has infinitely many values,
you can then specify a continuous distribution for the sweeper to sample from.
Hint 1: you may prefer to search some hyperparameters in log space, e.g. learning rate.
You may prefer to search the learning rates in a set like {10−1, 2× 10−1, 10−2, 2× 10−2, . . . }.
Hint 2: you may want to work iteratively and start by a coarse sweep over a wide range of
values for the hyperparameters, and carry-on with finer sweeps that explore hyperparameters
regions close to a well-performing run.

We provide skeleton functions grid search and random search in util/hparam sweeping.py

for implementing grid search and random search functions. As per the previous questions, you are
recommended to use the provided class Run in util/result processing.py to log and process
your results. You are also advised to train at least 3 seeds per hyperparameter configuration.

You can also implement hyperparameter scheduling within the schedule hyperparameters

function of the DDPG class in rl2024/exercise4/agents.py for a better performance of your
agent. You were asked to do this in Section 5.3 for the exploration probability ϵ, you may decide
to implement some scheduling for other hyperparameters here.

A difference between hyperparameter sweeping and scheduling is that the value of the hyperpa-
rameter might be changed by your scheduler during the training, whereas they keep identical

17

http://highway-env.farama.org/environments/racetrack/
https://github.com/Farama-Foundation/HighwayEnv

during the training procedure under the hyperparameter sweeping. As you saw in Section 5.3, the
hyperparameter scheduling routines may have hyperparameters themselves (for example, the ep-

silon decay hyperparameter when using ϵ scheduling in DQN).

Note: we won’t mark the correctness of your hyperparameter sweeping and scheduling implemen-
tations. You can use any hyperparameter turning method you’d like, and you are not required to
implement all search/scheduling functions, although we recommend you to do so for better per-
formance. But, you are required to briefly describe your hyperparameter sweeping and scheduling
methods to answer the questions listed below.

Hyperparameter Tuning and Performance [15 Marks]

Hyperparameter tuning (adjusting hyperparameters in the config in exercise5/train ddpg.py)
and scheduling (through schedule hyperparameters in the DDPG class in exercise4/agents.py)
will be required to achieve full performance marks. You will need to provide us with the saved
[parameters/weights] of the DDPG model so that we can verify the performance of your trained
agents. The saved [parameters/weights] of the model shall be named as ‘racetrack hparam -

latest.pt’ which is specified by the EX5 RACETRACK CONSTANTS in constants.py. Make sure
that your saved model for this question is different from the one for Question 4,
i.e. ‘racetrack hparam latest.pt’ differs from ‘racetrack latest.pt’. If the two saved
models are identical, you will get 0 mark for this question. In the meantime, make
sure that the performance achieved by your saved parameters (saved at the end of training in
exercise5/train ddpg.py) are reliable by using the exercise5/evaluate ddpg.py script. [10
Marks]

Performance marks 0/10 5/10 10/10

DDPG < 500 < 800 ≥ 800

Table 5: Average (evaluation) returns required for given performance marks for DDPG in the
Racetrack environment.

In addition to the performance marks, we will also mark your submission based on how you
select the hyperparameters to get the best evaluation return. Please provide a short description
(< 200 words) about how you did the hyperparameter turning and scheduling to get the best
performance by filling the question5 1 in answer sheet.py. [5 Marks]

Note: make sure the hyperparameters provided in EX5 RACETRACK CONSTANTS in constants.py

are set to their default values. During our evaluation, we will use the original constants.py
to overwrite the same file in your submission. Therefore, any change in constants.py will be
ineffective.

18

6 Marking

Academic Conduct Please note that any assessed work is subject to University regulations and
students are expected to follow any such regulations on academic conduct:
http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

Correctness Marking As mentioned for most questions, we partly mark your submissions
based on the correctness of the implemented functions. For pre-defined functions we ask you to
implement, including most functions stated across all questions, we use unit testing scripts. In
these scripts, we pass the same input into both your and our reference implementation and assign
you marks according to whether the output of your function matches the expected output provided
by our reference implementation. For functions which are evaluated for correctness, you must read
the documentation to ensure that your implementation follows the expected format. Only change
files and functions specified for Questions 1–5 and ensure that the implementations
match the specifications provided in the instructions! Any deviations might cause
automated marking to fail which could lead to a deduction in marks. This includes
optimisations and implementation tricks which could improve performance!

Performance Marking For performance evaluation in Questions 4 and 5, we will evaluate your
models against the default training scripts of the code base to ensure that your agent solves the
environments we used for training measured by the achieved average returns, and we will only
import the agents and their respective configuration dictionaries from the files you submitted.
Therefore, make sure that the hyperparameters of your algorithms have been appro-
priately tuned and are set in the configurations of the respective training scripts
to achieve the required thresholds. Also, for Questions 4 and 5, make sure to provide
saved model parameters for DDPG trained on Racetrack as instructed in the respective
Questions. In particular, make sure to save your model for Question 4 as racetrack latest.pt

in the exercise4 folder and your model for Question 5 as racetrack hparam latest.pt in the
exercise5 folder.

7 Submission Instructions

Before you submit your implementations, make sure that you have organised your files according
to the structure indicated in Figure 6.

Finally, compress the rl2024 folder into a zip file and submit the compressed file through
Learn. In your Learn page, go to the Assessment panel and find the Coursework page. For
general guidance on submitting files through Learn, you can find further information through the
blog post linked below:
https://blogs.ed.ac.uk/ilts/2019/09/27/assignment-hand-ins-for-learn-guidance-for-students/.

You may also refer to the link below for instructions specific to the CodeGrade submission
platform https://docs.codegra.de/guides/use-codegrade-as-a-student.html.

Late Submissions All submissions are timestamped automatically and we will mark the
latest submission. If you submit your work after the deadline a late penalty will be applied to
this submission unless you have received an approved extension. Please be aware that marking for
late submissions may be delayed and marks may not be returned within the same timeframe as
for on-time submissions.

For additional information or any queries regarding late penalties and extension requests, follow
the instructions stated on the School web page below:
web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests

19

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct
https://blogs.ed.ac.uk/ilts/2019/09/27/assignment-hand-ins-for-learn-guidance-for-students/
https://docs.codegra.de/guides/use-codegrade-as-a-student.html
http://web.inf.ed.ac.uk/infweb/student-services/ito/admin/coursework-projects/late-coursework-extension-requests

rl2024

init .py

answer sheet.py

constants.py

exercise1

init .py

mdp.py

mdp solver.py

exercise2

init .py

agents.py

train monte carlo.py

train q learning.py

utils.py

exercise3

init .py

agents.py

evaluate dqn.py

networks.py

replay.py

train dqn.py

train reinforce.py

evaluate reinforce.py

exercise4

init .py

agents.py

racetrack latest.pt

evaluate ddpg.py

train ddpg.py

exercise5

init .py

racetrack hparam latest.pt

evaluate ddpg.py

train ddpg.py

util

hparam sweeping.py

result processing.py

Figure 6: Required folder structure for submission. Files which need to be modified or created
for this coursework are marked in bold. Files which may optionally be modified to facilitate
completion of the coursework are italicised.

20

References

[1] Timothy P Lillicrap et al. “Continuous control with deep reinforcement learning”. In: Inter-
national Conference on Learning Representations (2015).

[2] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In: Nature
518.7540 (2015), pp. 529–533.

[3] David Silver et al. “Deterministic policy gradient algorithms”. In: 2014.

[4] Richard S Sutton et al. “Policy gradient methods for reinforcement learning with function
approximation”. In: Advances in Neural Information Processing Systems. 2000, pp. 1057–
1063.

21

	Introduction
	Contact
	Getting Started
	Overview
	Questions
	Dynamic Programming [15 Marks]
	Tabular Reinforcement Learning [20 Marks]
	Deep Reinforcement Learning [32 Marks]
	Continuous Deep Reinforcement Learning [18 Marks]
	Fine-tuning the Algorithms [15 Marks]

	Marking
	Submission Instructions

