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Overview: The following tutorial questions relate to material taught in the
first two weeks of the 2023-24 Reinforcement Learning course. They aim at
encouraging engagement with the course material and facilitating a deeper un-
derstanding.

In this week of tutorials we will start looking into modelling “real-world” prob-
lems as Reinforcement Learning problems. I quote “real-world” as we will typ-
ically resort to what is often called a “toy-problem” in academia. Part of this
is because they are easier to write, and much easier to limit in scope. Part of
it is because it allows us to poke controllable holes into the problems and make
the limitations and assumptions that much clearer. Rather than overwhelming
you with potential considerations (and more realistic problems especially from
your everyday experience would trigger many such personalised thoughts that
we can’t always predict), you are introduced to them one at a time. It is much
easier for you to focus on what we are trying to communicate when you accept
from the start that it is a “story”, and not exactly reality.

The descriptions of the problems will still not always be a perfect specification;
that is after all what is required of you to produce when modelling it. The
description will however hint at the correct level of abstraction. For example,
in these problems we are presenting a frog climbing onto a rock as if it were a
trivial matter, and do not give any detailed information on that process.

[Could be fun to consider what such information might be. By the way, you will
see a lot of italicised brackets like these, especially in the solutions. These are
just here for you to contemplate further, or perhaps discuss with your colleagues
or tutor if you so want.]



Problem 1 - Modelling: Frog on a Rock

A friendly frog, Hop Along was stranded on a rock surrounded by water. It
needs to get to land without falling in. The only way to safety is for it to jump
on to neighbouring rocks till it arrives on land.
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Figure 1: “Will He Make it?” (Image and title from Yana Knight [2021], with
permission).

There are two rocks, and Hop Along can jump from a rock to another or from
the final rock to land. However, sometimes it misses and ends up in the water,
having to climb back onto the same rock it tried to jump from. The rocks are
arrayed in a row leading from its starting rock, which we will name rocky, to
rocky, and then finally land which can only be reached from rock.

Consider the control problem where the current state is specified by Hop Along’s
location and the actions Hop Along can take is to attempt to jump towards
another reachable rock or land.

Assume that Hop Along’s jumps always have a 90% chance of reaching the in-
tended destination, while the rest of the time Hop Along falls in the water.

Formulate a Markov Decision Process (MDP, see Sutton and Barto [2018], Ch. 3)
for the problem of deciding on Hop Along’s actions in order to help it reach land.
Why did you formulate it as you did? What additional assumptions did you
have to make?

Can you define the uniform random policy on this MDP? What about the
optimal policy?

Answer: We define three states, rockg, rocky, and land. We will assume that
the episode terminates once we have reached land, as that is Hop Along’s goal.



For the same reason, a reasonable reward function could give a reward of 10
for reaching land (with all other rewards 0). Though other values could be
used.
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Graphical model for Problem 1.

The state land will be an absorbing state as we are not interested in further
controlling Hop Along after that. We can reach land from all our potential
starting states, as long as the Reinforcement Algorithm we use does not get
caught in a loop between rockg and rock;. If we can guarantee that, then we
can set our discount factor to 1.

[Can you see how such a loop might happen?)

We could set a smaller discount factor (e.g. 0.9) as this will help prioritise
policies that reach land sooner. Another way of achieving the latter would be
to add a small negative reward to, either all transitions to rocky and rocky, or all
actions that are not “Jump to land”, as the negative rewards would accumulate
the longer the task takes to complete.

As land is an absorbing state, we have to define one action from it (which we
have named “stay”) that 100% transitions the state back to land, and with a
reward of 0.

For defining the policies, the uniformly random policy is defined for each state
such that the probability of each possible action from that state is equal. In
this case, m(a1|rocko) = 1, m(aigndlrock:) = 0.5 and 7w(ag|rock;) = 0.5. We
may also consider the possibility of a 'no-op’ action where Hop Along stays at
the current location. This would of course change the possible actions and the
corresponding probabilities.

The optimal policy, however, depends on the reward we receive for taking each
action (and there may be multiple optimum policies depending on the reward
model), so we cannot define (or learn) this until the reward model has been



defined. In this case, assuming we receive a reward of 10 for reaching land
and 0 otherwise, and our discount factor is 0.9, then we do have a unique,
deterministic optimal policy: w(a1|rocko) = 1, m(aand|rock;) = 1. However,
note that if the discount factor is 1 (there is no penalty for falling in the water),
the optimal policy is not unique; in fact there are an infinite number of stochastic
optimal policies with different distributions for m(a|rock;) (the random policy
included) since they will all have a return of 10 eventually!

Problem 2 - Modelling: Frog on a Rock 2

Though in Problem 1 we modelled our frog as always getting back on the rock
it falls off, reality does not always comply with our assumptions (or conform
to our expectations) and Hop Along the frog ended up being carried away by
the river. It now resides in a calm little pond, with a nice rock in the middle,
and surrounded by flies. It spends its time climbing onto this rock, and then
jumping into one of the four cardinal directions (South, West, North, East) and
swallowing the flies it comes across on its way down to the water.

Figure 2: “Frog with Problems.” (Image and title from [ I,
with permission).

Part a

Formulate Hop Along’s attempt to catch as many flies as possible as a Multi-
Armed Bandit (MAB) problem (see [ ], Ch. 2).



Answer: We have four actions/arms to choose from at each time-step: {South,
West, North, Fast}. In each time-step, we select one of the four actions and
receive a reward (in number of flies) from the environment. Our goal is to
maximise the expected total number of flies across time.

Part b

Can you define two simple exploration strategies that Hop Along could employ
to try to maximise the total number of flies he catches? What is an advantage
and disadvantage of each potential strategy?

Answer: Hop Along could employ e-greedy or UCB (Upper Confidence Bound)
strategies, for example (see lecture 2 for details). UCB is likely to give a lower
regret (defined after T rounds as the difference between the total number of flies
caught, and the expected total number of flies that would have been caught,
if the optimal action had been taken from the beginning), if we can assume a
well-behaved reward distribution (e.g. Gaussian), but e-greedy action selection
will be simpler and does not require an assumption on the reward distribution.
There are of course other possible strategies with their own assumptions and
corresponding advantages and disadvantages.

Part ¢

An implied assumption in Part a is that the frog will never stop jumping. If
there was a limited amount ¢ of jumps the frog could do (let’s say ¢ = 100
jumps), would it still make sense to model this problem as a MAB Problem?
Why? If not, how would you go about modelling this scenario?

Answer: The problem with a limited number of jumps is that we can no longer
assume that we are taking actions to infinity. In other words, we can only take
a limited number of actions. [Of course, there might be values of ¢ for which we
can still practically assume taking actions to infinity. Can you tell why?]

(You can also imagine a variation of this problem where the budget is on the
available number of flies. Then we are still limited in the number of jumps,
though we might not know exactly how many that is before running the ex-
periment. [Why don’t we know exactly how many actions we can take in this
version?])

It would make sense to instead model this limited number of jumps scenario as
a Reinforcement Learning (RL) problem that includes a state variable for the
number of jumps left/taken. As is, we would have to look for model-free RL
algorithms to solve that problem. [What part of the environment model would
we not have access to?)

Ultimately however, even though some theoretical guarantees do not hold when
we have to take a finite set of actions [Which? (see lecture 2 slides)], we can



still model our problem as a MAB. There is no explicit assumption of an infinite
horizon (i.e. end time).

Note, that there are alternative MAB formulations in the literature which could
be used here instead, such as “Budget-Limited Multi-Armed Bandits”

[ ]; This is an entirely optional and not necessarily useful
reading, other than to point out that there are variants to the problem in the
literature. However, it has been asked in class if there are cases where we treat
the exploration as a different phase from exploitation, and this paper provides
one such scenario, if you are curious.

You could also more generally look into MAB solutions that explicitly address
the finite horizon (limited number of actions if you consider that we take one
action per time-step). Try “Finite-Horizon Multi-Armed Bandit” (with and
without quotations) in your favourite search engine (the search results will
not be as clean as you might want them, but this is often the case with such
searches).

Part d

Let’s go back to assuming an infinite number of jumps. Another implied as-
sumption in Part a has been that we can control Hop Along’s actions. If we
couldn’t though (perhaps because we are not Hop Along ourselves, but a re-
searcher interested in how many flies it eats), would it still make sense to model
this as a MAB problem? Why? If not, how would you go about modelling this
scenario?

Answer: The apparent answer is “no”. A Multi-Armed Bandit (MAB) problem
assumes access to a space of actions! at each time-step. If there is no action to
take or, in other words, no decision to make, then we cannot formulate a MAB
problem.

It might be best to simply model this as a statistical inference problem, where
we are trying to learn a distribution over Hop Along’s behaviour in relation to
its jumps so far.

One can of course still imagine formulating the problem as a MAB from the frog’s
perspective and then comparing the frog’s actual behaviour to the solutions
we come up with (perhaps we are interested in seeing whether frog behaviour
approximates e-greedy behaviour).

Lor specifically a discrete set of actions in the examples we have seen; for a continuous space
of actions or a set of actions with similarity between actions, you could look into

[2014].



Finally, to answer the question: What if the much-troubled frog chasing flies
was an oil-rig company sampling oil deposits, and the four cardinal directions
were four different extraction sites?, we would need to discuss the cost of the
test digs as well as the general question of using of non-renewable energies or
the dangers of oil spills for marine life, which all suggests a wider study of the
literature and of the problem than possible within this course. Nevertheless,
the methods that are taught in this course can be useful also in more complex
situation when we cooperate with the right experts and stakeholders.
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