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Overview: The current tutorial questions relate to material taught in weeks 2/3
of the 2023-24 Reinforcement Learning course. They aim at encouraging engage-
ment with the course material and facilitating a deeper understanding.

This week you are presented with a couple of exercises related to Dynamic
Programming and Monte Carlo methods asking you to do some computations
by hand. For the Dynamic Programming problem, there is no need to run these
till convergence. The solution of Problem 1 is intended to show you enough to
see how it works, and to give you the details on what it converged to and after
how many steps. Problem 1 requires two outer loops of the Policy Iteration
algorithm, and the first Policy Evaluation converges after 15 updates (4 updates
are enough to understand what is going on).

If you are so inclined, you could also write a quick script to tackle Problem 1.
This can be a good exercise in understanding how the algorithm works and will
help to prepare you for the coursework.

Generally, when considering Reinforcement Learning algorithms, note that most
of them1 can be understood as a specific instance of the Generalised Policy It-
eration procedure: We iterate, until the policy converges, over one step of some
variant of Policy Evaluation (which needs to improve the evaluation of the cur-
rent policy at least by a little) and one step of some form of Policy Improvement
(which we generally want to be at least somewhat greedy so that convergence
is guaranteed). After the Policy Improvement step, we get a new policy whose
evaluation (via state-value or action-value function) we can improve upon by
the next Policy Evaluation step, and so forth until convergence. See Sutton and
Barto [2018], section 4.6, page 86 for details.

The Monte Carlo policy evaluation methods in Problem 2 could replace the
Iterative Policy Evaluation step (a Dynamic Programming algorithm) of the
Policy Iteration algorithm. [Though we wouldn’t usually do this while evaluating
the state-value function. Why? ]

1Policy gradient methods don’t generally follow this pattern.
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Problem 1 - Dynamic Programming

Consider the Hop Along MDP from tutorial 2. Set the discount factor to γ = 0.9,
and assume a reward of 10 for reaching land (and 0 otherwise). Apply two
iterations of Policy Iteration, starting from a uniform initial policy.

Do the final values and policy agree with your intuition?

Answer:

Start with a uniform policy:
π0(rock0, jump to rock1) = 1
π0(rock1, jump to rock0) = 0.5
π0(rock1, jump to land) = 0.5

and an initial evaluation for this policy of:
V0(rock0) = 0
V0(rock1) = 0

[V (land) is always 0. Why?]

We will use a convergence check of no change to any value state function greater
than θ = 0.01.
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1st Iteration: Policy Evaluation

V1(rock0) = π0(rock0, jump to rock1)(0.1∗[0+γV0(rock0)]+0.9∗[0+γV0(rock1)])
= 0

V1(rock1) = π0(rock1, jump to rock0)(0.1∗[0+γV0(rock1)]+0.9∗[0+γV0(rock0)])
+π0(rock1, jump to land)(0.1 ∗ [0 + γV0(rock1)] + 0.9 ∗ [10 + γV (land)])

= 4.5

maxs∈{rock0,rock1}[V1(s)− V0(s)] ≥ θ

V2(rock0) = π0(rock0, jump to rock1)(0.1∗[0+γV1(rock0)]+0.9∗[0+γV1(rock1)])
= 0.9 ∗ 0.9 ∗ 4.5 = 3.645

V2(rock1) = π0(rock1, jump to rock0)(0.1∗[0+γV1(rock1)]+0.9∗[0+γV1(rock0)])
+π0(rock1, jump to land)(0.1 ∗ [0 + γV1(rock1)] + 0.9 ∗ [10 + γV (land)])

= 0.5 ∗ (0.1 ∗ [0 + 0.9 ∗ 4.5])
+ 0.5 ∗ (0.1 ∗ [0 + 0.9 ∗ 4.5] + 0.9 ∗ [10 + 0.9 ∗ 0])

= 0.405 + 4.5 = 4.905

maxs∈{rock0,rock1}[V2(s)− V1(s)] ≥ θ

V3(rock0) = π0(rock0, jump to rock1)(0.1∗[0+γV2(rock0)]+0.9∗[0+γV2(rock1)])
= 0.1 ∗ [0.9 ∗ 3.645] + 0.9 ∗ [0.9 ∗ 4.905]
= 0.32805 + 3.97305 = 4.3011

V3(rock1) = π0(rock1, jump to rock0)(0.1∗[0+γV2(rock1)]+0.9∗[0+γV2(rock0)])
+π0(rock1, jump to land)(0.1 ∗ [0 + γV2(rock1)] + 0.9 ∗ [10 + γV (land)])

= 0.5 ∗ (0.1 ∗ [0 + 0.9 ∗ 4.905] + 0.9 ∗ [0 + 0.9 ∗ 3.645])
+ 0.5 ∗ (0.1 ∗ [0 + 0.9 ∗ 4.905] + 0.9 ∗ [10 + 0.9 ∗ 0])
= 0.5 ∗ (0.44145 + 2.95245) + 0.5 ∗ (0.44145 + 9)
= 0.44145 + 1.476225 + 4.5 = 6.417675

maxs∈{rock0,rock1}[V3(s)− V2(s)] ≥ θ

V4(rock0) = π0(rock0, jump to rock1)(0.1∗[0+γV3(rock0)]+0.9∗[0+γV3(rock1)])
' 0.1 ∗ [0.9 ∗ 4.3011] + 0.9 ∗ [0.9 ∗ 6.4177]
' 0.3871 + 5.1983 = 5.5854

V4(rock1) = π0(rock1, jump to rock0)(0.1∗[0+γV3(rock1)]+0.9∗[0+γV3(rock0)])
+π0(rock1, jump to land)(0.1 ∗ [0 + γV3(rock1)] + 0.9 ∗ [10 + γV (land)])

' 0.5 ∗ (0.1 ∗ [0 + 0.9 ∗ 6.4177] + 0.9 ∗ [0 + 0.9 ∗ 4.3011])
+ 0.5 ∗ (0.1 ∗ [0 + 0.9 ∗ 6.4177] + 0.9 ∗ [10 + 0.9 ∗ 0])
= 6.8195

maxs∈{rock0,rock1}[V4(s)− V3(s)] ≥ θ

Eventually, we have at time step t = 14:
V14(rock0) = 7.2596,
V14(rock1) = 8.1681;
and at time step t = 15:
V15(rock0) = 7.2695,
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V15(rock1) = 8.1753;
which is enough to terminate the policy evaluation step with a convergence
check for no value state change greater than 0.01.

Policy Improvement (1 step)

π1(rock0, jump to rock1) = 1
π1(rock1, argmaxa∈{jump to rock0,jump to land}∑

s′∈{rock0,rock1,land} p(s
′|rock1, a) ∗ [r(rock1, a, s

′) + γV (s′)]) = 1

Therefore:
π1(rock1, jump to rock0) = 0
π1(rock1, jump to land) = 1

2nd Iteration: Policy Evaluation

We can and will continue from our evaluations of the previous policy. After all,
the evaluation of the new policy will be higher at all states. [Why? ]

This time we converge at time step t = 5 with:
V5(rock0) = 8.8028,
V5(rock1) = 9.8901.

Policy Improvement (1 step)

The policy improvement step will not alter the policy (i.e. the policy is stable),
and we terminate returning the evaluation above, and the policy:
π∗(rock0, jump to rock1) = 1
π∗(rock1, jump to rock0) = 0
π∗(rock1, jump to land) = 1,
or, equivalently (with the common slight abuse of notation):
π∗(rock0) = jump to rock1
π∗(rock1) = jump to land.

Hopefully, this optimal policy is what you would have intuitively expected. The
optimal values should be (approximately) too: they are both slightly less than
10 due to discounting and the 10% chance of falling off the rock at each timestep,
with V ∗(rock0) < V ∗(rock1) as there is more discounting and chance of falling
off before reaching the reward from rock 0 than from rock 1. The optimal policy
and value function may not always be so intuitive, particularly as the MDPs we
consider start to scale up!

This problem is intended to be answered by hand, to develop intuition for the in-
ner workings of policy iteration. However, to provide an additional perspective,
and to help bridge the gap between the tutorials and the coursework, an interac-
tive notebook solution to this tutorial problem is also available as a GitHub Gist:
https://gist.github.com/AdamJelley/d1e872426b0186980a15f1b6421250c2
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Problem 2 - Monte Carlo

Compute the state-value function for a given policy π and MDP without access
to the MDP’s model, using the following four episodes, in order:

rock0, 0, rock0, 0, rock1, 10, land

rock1, 0, rock0, 0, rock1, 10, land

rock0, 0, rock0,−100, sea

rock1, 0, rock0,−100, sea

Note: The discount factor used here is γ = 1. [Why is this acceptable here? ]

Figure 1: “Frog with More Problems.” Image and title used with permission
from Yana Knight and Andreadis [2021]

Part 1

Use first-time visit Monte Carlo to evaluate the state-value function at each
state. Show your calculation.

Answer:

[Wait! How come we don’t need to know what the policy is? ]

Here we assume a discount factor of γ = 1. This is safe to do as the episodes
terminate. Note that I asked for an application of the algorithm. As such,
simply averaging across samples to get the final result will not suffice here. (I
am putting the sequence of rewards for new samples in parentheses).
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V0(rocko) = 0
V0(rock1) = 0 (optionally: V (land) = V (sea) = 0)

After episode 1:

V1(rocko) = (0 + 0 + 10)/1 = 10
V1(rock1) = (10)/1 = 10

After episode 2:

V2(rocko) = [10 + (0 + 10)]/2 = 10
V2(rock1) = [10 + (0 + 0 + 10)]/2 = 10

After episode 3:

V3(rocko) = [10 + 10 + (0− 100)]/3 = −26.7
V3(rock1) = V2(rock1) = 10

After episode 4:

V4(rocko) = [10 + 10− 100 + (−100)]/4 = −45
V4(rock1) = [10 + 10 + (0− 100)]/3 ' −26.7

Part 2

Use every-time visit Monte Carlo to evaluate the state-value function at each
state. Show your calculation.

Answer:

V0(rocko) = 0
V0(rock1) = 0 (optionally: V (land) = V (sea) = 0)

After episode 1:

V1(rocko) = [(0 + 0 + 10) + (0 + 10)]/2 = 10
V1(rock1) = (10)/1 = 10

After episode 2:

V2(rocko) = [10 + 10 + (0 + 10)]/3 = 10
V2(rock1) = [10 + (0 + 0 + 10) + (10)]/3 = 10

After episode 3:

V3(rocko) = [10 + 10 + 10 + (0− 100) + (−100)]/5 = −34
V3(rock1) = V2(rock1) = 10

After episode 4:

V4(rocko) = [10 + 10 + 10− 100− 100 + (−100)]/6 = −45
V4(rock1) = [10 + 10 + 10 + (0− 100)]/4 = −17.5
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Part 3

How would you expect the state-values estimated by both first-time visit Monte
Carlo and every-time visit Monte Carlo to change as the number of episodes
considered goes to infinity? (No mathematical proofs required, just a short
description of the expected values).

Answer:

The estimates of the state-values from both first-time visit and every-time visit
Monte Carlo should converge to the true state value function vπ for the be-
haviour policy as the number of episodes considered goes to infinity (assuming
both the policy and MDP are stationary).

If interested, for a full comparison and the proof of convergence for the more
complex case of every-visit Monte Carlo, see Theorem 7 in Ref. Singh and Sutton
[1996].

Part 4

Which are the absorbing states?

Answer:

The states land and sea, as they terminate the episodes.

However, this assumes that we have not terminated any episodes prematurely.
This is something we might have to do, if we were to use these algorithms over
an MDP without absorbing states. This is obviously beyond the scope of this
quesitons, but imagine you are given a sample trajectory, such as:

rock0, 0, rock0

Would you be confident now that land and sea are absorbing states? No worries,
we will came back to this in later tutorials.
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