
Reinforcement Learning Tutorial 6, Week 7

—

Policy Gradients: The REINFORCE algorithm∗

and Hyperparameters in RL

Pavlos Andreadis

March 2024

Overview: The following tutorial questions relate to material taught in weeks
5 and 6 of the 2023-24 Reinforcement Learning course. They aim at encourag-
ing engagement with the course material and facilitating a deeper understand-
ing.

We continue on the “AI controlled orchard” problem from tutorial 6 for a deep
dive into a simple application of the REINFORCE algorithm. As you apply
the algorithm, consider the changes to your policy and what they reflect. Also,
consider the limitations in the suggested formulation of the problem (you are
implicitly given that you have to use two state-action features, which you will
have to define).

The second problem asks you to consider the use of the use of the learning rate
and discount factor in Reinforcement Learning.

Problem 1 - Policy Gradients: REINFORCE

Consider the orchard problem from our last tutorial Andreadis [2021], and the
trajectory representing its last harvest:

Concentration of A
(ppm)

Concentration of B
(ppm)

Concentration of C
(ppm)

Action
Taken

Profit/Reward
(credits)

6 7 2 Wait -1
0 5 2 Wait -1
3 8 4 Harvest 19

∗with special thanks to Ross McKenzie for introducing a first version of problem 1

1



Assume that these actions were taken using a policy parameterization with
soft-max in action preferences with linear action preferences, and a known pa-
rameter θ0 = [0, 0] (i.e. assume the state-action space is parameterised by two
features, here chosen to be defined by the action only). Using the REINFORCE
algorithm with a step size of α = 10−4, update your policy given the above tra-
jectory.

By defining θ0 = [0, 0] the exercise implies the use of 2 features but does not
specify them. Let us define each state-action pair as:

x(s, a = Harvest) = [0, 1]
x(s, a = Wait) = [1, 0]

[If you have some experience of Decision Theory [Braziunas, 2006] (or Rec-
ommender Systems), you can think of action preferences as a utility function
over actions. The policy function then, to continue the metaphor, would be the
behaviour model.]

For Linear action preferences we have h(s, a, θ) = θTx(s, a). Our policy at time
step 0 is:

π0(a|s,θ) = eh(s,a,θ)∑
b eh(s,b,θ) = e[0,0]

T x(s,a)∑
b e[0,0]T x(s,b)

= e0

e0+e0 = 1
2 .

[Note that our state vector, in this case, only depends on the action taken but
that this is not generally the case.]

As we are taking the previous tutorial’s setup, and the episodes terminate, we
will set γ = 1. Since REINFORCE is a Monte Carlo algorithm, the target at
each time-step is the full return:

G0 =
∑T=3

k=t+1=1 γ ·Rk = 1 ·R1 + 1 ·R2 + 1 ·R3 = −1− 1 + 19 = 17.

This gives us:

θ1 = θ0 + α γ G0 ∇ln π(A0|S0,θ0)

= θ0 + α γ G0

(
x(S0, A0)−

∑
b

π(b|S0,θ0) x(S0, b)
)

= [0, 0] + 10−4 · 1 · 17 ·
(

[1, 0]− (
1

2
[0, 1] +

1

2
[1, 0])

)
= [0, 0] + 10−4 · 17 ·

[1

2
,−1

2

]
= [0.85 · 10−3,−0.85 · 10−3].

Proceeding similarly, we have:

G1 =
∑T=3

k=2 γ ·Rk = R2 +R3 = −1 + 19 = 18,

and the policy

2



π1(a = Harvest|s,θ1) =
e[0.85·10

−3,−0.85·10−3]T [0,1]∑
b e

[0.85·10−3,−0.85·10−3]Tx(s,b)
=

e−0.85·10−3

e−0.85·10−3 + e0.85·10−3

≈ (1/1.00085)

(1/1.00085) + 1.00085
≈ 0.99915

2
≈ 0.49957

π1(a = Wait|s,θ1) =
e[0.85·10

−3,−0.85·10−3]T [1,0]∑
b e

[0.85·10−3,−0.85·10−3]Tx(s,b)
=

e0.85·10
−3

e−0.85·10−3 + e0.85·10−3

≈ 1.0008)

(1/1.00085) + 1.00085
≈ 1− 0.49957 = 0.50043.

Giving us the update:

θ2 = θ1 + α γ G1 ∇ln π(A1|S1,θ1)

= θ1 + α γ G1

(
x(S1, A1)−

∑
b

π(b|S1,θ1) x(S1, b)
)

= [0.85 · 10−3,−0.85 · 10−3] + 10−4 · 1 · 18 ·
(

[1, 0]− (0.49957 [0, 1] + 0.50043 [1, 0])
)

= [0.85 · 10−3,−0.85 · 10−3] + 10−4 · 18 · [0.49957,−0.49957]

≈ [1.75 · 10−3,−1.75 · 10−3].

[Note how we are computing the probability of taking each action under the up-
dated policy. This is not the policy we used to sample our trajectory from. As
REINFORCE is a control algorithm, the idea is that you will sample the next tra-
jectory using the updated policy from the end of the previous trajectory.]

And finally:

G2 =
∑T=3

k=3 γ ·Rk = R3 = 19 = 19,

and

π2(a = Harvest|s,θ2) =
e[1.75·10

−3,−1.75·10−3]T [0,1]∑
b e

[1.75·10−3,−1.75·10−3]Tx(s,b)

=
e−1.75·10−3

e−1.75·10−3 + e1.75·10−3

≈ 0.998

0.998 + 1.002
≈ 0.499

π2(a = Wait|s,θ2) =
e[1.75·10

−3,−1.75·10−3]T [1,0]∑
b e

[1.75·10−3,−1.75·10−3]Tx(s,b)

=
e1.75·10

−3

e−1.75·10−3 + e1.75·10−3

≈ 1− 0.499 = 0.501.

3



[Note how the probability assigned to harvesting is decreasing. Why is this? ]

With the final update for this trajectory (where we are harvesting):

θ3 = θ2 + α γ G2 ∇ln π(A2|S2,θ2)

= θ2 + α γ G2

(
x(S2, A2)−

∑
b

π(b|S2,θ2) x(S2, b)
)

= [1.75 · 10−3,−1.75 · 10−3] + 10−4 · 1 · 19 ·
(

[0, 1]−
(
0.499 [0, 1] + 0.501 [1, 0]

))
= [1.75 · 10−3,−1.75 · 10−3] + 10−4 · 19 · [−0.501, 0.501]

≈ [0.80 · 10−3,−0.80 · 10−3].

[What actions is our policy currently showing preference to? Do you find this
surprising? ]

Of course we could have used a different set of features for this problem. One
that would make use of the information provided us.

If we had more trajectories/episodes, we would go through the same proce-
dure with all of them, continuing with the θ from the end of the previous
episode.

[However, only using the 3 concentrations as provided in the table would not
lead to a useful update. Can you tell why? What could you add to those features
to have a useful representation? ]

Problem 2 - Discussion

Part a

Considering a Reinforcement Learning algorithm in general, what is the overall
effect of increasing the learning rate? What happens when you set it too high?
What happens when you set it too low?

Answer:

The learning rate η is usually not critical for simple deterministic problems,
and relatively large values are often useful to reduce the time to convergence.
However, if the initial TD-type errors are large compared to the relevant range of
values, then it may be necessary to limit the learning rate from the beginning.
If the rewards (or actions) are stochastic, then it is necessary to reduce the
learning rate according to the Robbins-Monro conditions (see lecture 2, slide 12),
although in practice a quicker decay of the learning rate is usually preferable,
i.e. the learning rate may need to be decreased so that it reaches zero in finite
time. See also momentum techniques (for example Sarigül and Avci [2018]).
Also note that for RL methods based on function approximation, the Robbins-
Monro conditions are not sufficient for convergence.

4



Difficulties can arise, when several learning rates (or the learning rate and the
exploration rate) interact, e.g. if a sliding average with its own learning rate
enters the updates, if a training algorithm is used to approximate the policy
or value function etc. In this cases, some consideration of the relative “speed”
of the respective learning processes as well as some experimentation may be
necessary.

Part b

Is the discount factor γ:

1. Part of the definition of a Markov Decision Process? That is, a part of
the definition of the problem to be solved; or

2. Is it external to the problem? That is, a hyperparameter for training the
model.

When a discount factor is close to 1, we end up with a long horizon problem.
That is, we plan for long-term gains. Assume we were training a Reinforcement
Learning agent for a long-horizon problem. Could you think of a reason for
which a method using short-horizon targets (cut-off at some horizon h) might
outperform a method using long-term horizon targets on this problem? To
aid in answering, consider searching online for “planning horizon reinforcement
learning model accuracy” and look for related work.

Answer:

The answer is, arguably, both. The discount factor is occasionally included in
the tuple defining Markov Decision Processes (MDP) Silver [accessed 2020], but
is also frequently omitted and is not present in the original definition Bellman
[1957]. That being said, the discount factor determines the relative importance
of rewards, based on how close in time they are received. This affects what the
optimal policy for the problem would be. If we then were to adopt the view
that the discount factor is not part of the definition of an MDP, then an MDP
would not in-and-of-itself completely define our control problem (we would not
have fully defined our cost function).

There is work indicating that we can control the discount factor during training
in a way that would improve the learnt policy, in terms of performance when
deployed Jiang et al. [2015]. Specifically, this work defines a new “evaluation”
discount factor γeval, which is smaller than the discount factor we have defined
for our problem γ). This is then used to train a policy for a long horizon problem
(as defined by γ) using short horizon samples (as defined by γeval). This means
that the discount factor is used here as a training hyperparameter to trade off
bias and variance (see also e.g. Schulman et al. [2015]). In particular, the
authors show that you can see increasing the discount factor (and therefore
the effective horizon) as increasing the complexity of the learnt model. And as

5



you will recall from Machine Learning, we need to match the complexity of our
model to the task at hand.

Part c

What other parameters are relevant in Reinforcement Learning, and how do you
set their values?

Answer:

Different algorithms have different parameters, so, if you read or hear about
a new algorithm, try to get an idea whether their particular parameters are
sensitive, need online adjustment, or depend strongly on the problem. In other
words, own experience in using an algorithm is useful. Here, we restrict ourselves
to the following parameters:

• The exploration rate ε has been discussed in the context of MAB and
many of the features observed there, carry over also the general case,
although this parameter needs to be checked in any particular case and to
be adapted in many cases.

• Resolution parameters determine how many discretisation steps are made
available for the description of the state of a problem. Likewise, dimension-
ing parameters decide the complexity of function approximation methods,
e.g. the number of neuron is a network or the number of samples. Given
the problem complexity, these parameters are determined by the required
efficiency of the algorithm and the available resources.

• Initialisation values can include any prior knowledge on the problem, but
should otherwise not introduce an unwanted bias. E.g., optimistic initial-
isation, if done in a suitable way, introduces a bias towards exploration
that is often desirable. In other cases, small random initial values are a
good choice.

• The number of time steps should be large enough to reach a certain quality
of a solution, i.e., so that given the exploration rate, the learning rate(s)
and the complexity of the problem the solution can actually be found. It
is often helpful to make a rough calculation to get an idea how long you’ll
have to wait for a solution or whether you should reconsider the choice of
the parameters.

References
P. Andreadis. Reinforcement Learning Tutorial 5, Week 6 — Reward Shaping

/ Semi Gradient Monte Carlo. https://www.learn.ed.ac.uk/webapps/

blackboard/execute/content/file?cmd=view&mode=designer&content_

id=_5795113_1&course_id=_82627_1, 2021.

6

https://www.learn.ed.ac.uk/webapps/blackboard/execute/content/file?cmd=view&mode=designer&content_id=_5795113_1&course_id=_82627_1
https://www.learn.ed.ac.uk/webapps/blackboard/execute/content/file?cmd=view&mode=designer&content_id=_5795113_1&course_id=_82627_1
https://www.learn.ed.ac.uk/webapps/blackboard/execute/content/file?cmd=view&mode=designer&content_id=_5795113_1&course_id=_82627_1


Richard Bellman. A markovian decision process. Journal of Mathematics and
Mechanics, 6(5):679–684, 1957. ISSN 00959057, 19435274. URL http://www.

jstor.org/stable/24900506.

Darius Braziunas. Computational approaches to preference elicitation. Depart-
ment of Computer Science, University of Toronto, Tech. Rep, page 62, 2006.

Nan Jiang, Alex Kulesza, Satinder Singh, and Richard Lewis. The dependence
of effective planning horizon on model accuracy. In Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’15, page 1181–1189, Richland, SC, 2015. International Foundation
for Autonomous Agents and Multiagent Systems. ISBN 9781450334136.

Mehmet Sarigül and Mutlu Avci. Performance comparison of different momen-
tum techniques on deep reinforcement learning. Journal of Information and
Telecommunication, 2(2):205–216, 2018.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. High-dimensional continuous control using generalized advantage
estimation. arXiv preprint arXiv:1506.02438, 2015.

David Silver. Applications of reinforcement learning in real world. https:

//www.davidsilver.uk/wp-content/uploads/2020/03/MDP.pdf, accessed
2020.

7

http://www.jstor.org/stable/24900506
http://www.jstor.org/stable/24900506
https://www.davidsilver.uk/wp-content/uploads/2020/03/MDP.pdf
https://www.davidsilver.uk/wp-content/uploads/2020/03/MDP.pdf

