
Reinforcement Learning

Introduction to Multi-Agent Reinforcement Learning

Michael Herrmann, David Abel

Based on slides by Stefano V. Albrecht, Filippos Christianos, Lukas Schäfer, and Leonard Hinckeldey
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Introduction: Multi-agent systems



What is MARL?

Multi-agent reinforcement learning (MARL) is about finding optimal decision

policies for two or more artificial agents interacting in a shared environment.

• Applying reinforcement learning (RL) algorithms to multi-agent systems

• Goal is to learn optimal policies for two or more agents
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MARL Applications

Computer games Autonomous driving

Multi-robot warehouses Automated trading

3



Mutli-Agent Systems

A multi-agent system consists of:

• Environment: The environment is a physical or virtual world whose state evolves

and is influenced by the agents’ actions within the environment.

• Agents: An agent is an entity which receives information about the state of the

environment and can choose actions to influence the state.

⇒ Agents are goal-directed, e.g. maximizing returns
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Example: Level-Based Foraging

• Three agents (robots) with varying skill

levels

• Goal: to collect all items (apples)

• Items can be collected if a group of one

or more agents are located next to the

item and the sum of agents’ levels is

greater than or equal to the item level

• Action space

A = {up, down, left, right, collect, noop}
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MARL for Solving Multi-Agent Systems

Agent 1

Agent 2

Agent n

Environment
joint action modifies environment state

 action 

 action 

 action 

joint action

observation
& reward

observation
& reward

observation
& reward

• Goal: learn optimal policies for a set of agents in a multi-agent system

• Each agent chooses an action based on its policy ⇒ joint action

• Joint action affects environment state; agents get rewards + new observations
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Why MARL?

Why should we use MARL to find optimal solutions to multi-agent systems rather than controlling

multiple ’agents’ using a single-agent RL (SARL) algorithm?

Decomposing a large problem

• In LBF example, controlling 3 robots

each with 6 actions, the joint action

space becomes 63 = 216.

⇒ Large action space for SARL!

• We can decompose this into three

independent agents, each selecting from

only 6 actions.

⇒ Use MARL to train separate agent

policies (more tractable)

Decentralized decision making

• There are many real-world scenarios

where it is required for each agent to

make decisions independently.

• E.g. autonomous driving is impractical

for frequent long-distance data

exchanges between a central agent and

the vehicle.
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Challenges of MARL

New challenges arise in MARL:

• Non-stationarity caused by multiple learning agents

• Optimality of policies and equilibrium selection

• Multi-agent credit assignment

• Scaling in number of agents
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Challenges of Multi-Agent Learning

Non-stationary environment:

If multiple agents are learning, the

environment becomes non-stationary from

the perspective of individual agents

⇒ Moving target: each agent is optimizing

against changing policies of other agents
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Multi-Agent Credit Assignment

Multi-agent credit assignment: which agent’s actions contributed to receved rewards?

• At time step t all agents perform collect,

each receiving reward +1

• Whose actions led to the reward?

• The agent on the left did not contribute

• Learning agents must disentangle the

contributions of actions!
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Game models



Hierarchy of Games

Partially Observable Stochastic Game
n agents

m states - partially observed

Stochastic Game
n agents

m states - fully observed

Repeated
Normal-Form Game

n agents
1 state

Markov
Decision Process

1 agent
m states
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Normal-Form Games

Normal-form games define a single interaction between two or more agents, providing a

simple kernel for more general games to build upon.

Normal-form games are defined as a 3 tuple (I , {Ai}i∈I , {Ri}i∈I ):

• I is a finite set of agents I = {1, ..., n}
• For each agent i ∈ I :
• Ai is a finite set of actions

• Ri is the reward function Ri : A→ R where A = A1× ...×An (set of joint actions).
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Normal-Form Game Process

In a normal-form game, there are no time steps or states. Agents choose an action and

observe a reward.

The game proceeds as follows:

1. Each agent samples an action ai ∈ Ai with probability πi (ai )

2. The resulting actions from all agents form a joint action, a = (a1, ..., an)

3. Each agent receives a reward based on its individual reward function and the joint

action, ri = Ri (a)
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Classes of Games

Games can be classified based on the relationship between the agents’ reward functions.

• In zero-sum games, the sum of the agents’ reward is always 0

i.e.
∑

i∈I Ri (a) = 0, ∀a ∈ A

• In common-reward games, all agents receive the same reward (Ri = Rj ;∀i , j ∈ I )

• In general-sum games, there are no restrictions on the relationship between reward

functions.

15



Classes of Games

Games can be classified based on the relationship between the agents’ reward functions.

• In zero-sum games, the sum of the agents’ reward is always 0

i.e.
∑

i∈I Ri (a) = 0, ∀a ∈ A

• In common-reward games, all agents receive the same reward (Ri = Rj ; ∀i , j ∈ I )

• In general-sum games, there are no restrictions on the relationship between reward

functions.

15



Classes of Games

Games can be classified based on the relationship between the agents’ reward functions.

• In zero-sum games, the sum of the agents’ reward is always 0

i.e.
∑

i∈I Ri (a) = 0, ∀a ∈ A

• In common-reward games, all agents receive the same reward (Ri = Rj ; ∀i , j ∈ I )

• In general-sum games, there are no restrictions on the relationship between reward

functions.

15



Matrix Games

Normal-from games with 2 agents are also called matrix games because they can be

represented using reward matrices.

R P S

R 0,0 -1,1 1,-1

P 1,-1 0,0 -1,1

S -1,1 1,-1 0,0

Rock-Paper-Scissors

zero-sum

A B

A 10 0

B 0 10

Coordination Game

common-reward

C D

C -1,-1 -5,0

D 0,-5 -3,-3

Prisoner’s Dilemma

general-sum
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Repeated Normal-Form Games

Partially Observable Stochastic Game
n agents

m states - partially observed

Stochastic Game
n agents

m states - fully observed

Repeated
Normal-Form Game

n agents
1 state

Markov
Decision Process

1 agent
m states
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Repeated Normal-Form Games

To extend normal-form games to sequential multi-agent interaction, we can repeat the

same game over T timesteps.

1,1 0,1
2,2 1,1

 a = (2,1) 
r = (2,2)

p = 1.0

• At each time step t an agent i samples an action

ati

• The policy is now conditioned on a joint-action

history πi (a
t
i |ht) where ht = (ao , ..., at−1)

• In special cases, ht contains n last joint actions.

E.g. in a tit-for-tat strategy (Axelrod and

Hamilton 1981), the policy is conditioned on at−1
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Stochastic Games

s2

1,3 0,4
4,0 3,1

s1

1,1 0,1
2,2 1,1

s3

1,1 0,0
4,1 3,2

 a = (1,2) 
r = (0,4)

p = 0.8

 p = 0.2 

 a = (2,1) 
r = (4,1)

 p = 1.0 

p = 0.5

p = 0.5

a = (2,2)
r = (1,1)

• Each state can be viewed as a

non-repeated normal-form game

• Stochastic games can also be classified

into: zero-sum, common-reward or

general-sum

• The figure on the left shows a

general-sum case
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Example: Level-Based Foraging

• s ∈ S : vector of x-y positions for

agents/items, binary collection flags, levels for

agents/items

• ai ∈ Ai : move in four directions, collect item,

or no operation (noop)

• T : joint actions update state, e.g., two agents

collecting an item switch its flag

• R:
• common-reward: +1 reward for any item

collected by any agent

• general-sum: +1 reward only for agents

directly involved in item collection
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Partially Observable Stochastic Games (POSG)

Partially Observable Stochastic Game
n agents

m states - partially observed

Stochastic Game
n agents

m states - fully observed

Repeated
Normal-Form Game

n agents
1 state

Markov
Decision Process

1 agent
m states
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Partially Observable Stochastic Games (POSG)

At the top of the game model hierarchy, the most general model is the POSG

• POSGs represent complex decision processes with incomplete information

• Unlike in stochastic games, agents receive observations providing incomplete

information about the state and agents’ actions

• POSGs apply to scenarios where agents have limited sensing capabilities

⇒ e.g. autonomous driving

⇒ e.g. strategic games (e.g. card games) with private, hidden information

22



POSG Definition

POSG is defined in the same way stochastic games are, with two additions. Thus it is

defined as a 8 tuple (I , S , {Ai}i∈I , {Ri}i∈I , T , µ, {Oi}i∈I , {Oi}i∈I )

s2

1,3 0,4
4,0 3,1

s1

1,1 0,1
2,2 1,1

s3

1,1 0,0
4,1 3,2

 a = (1,2) 
r = (0,4)

p = 0.8

 p = 0.2 

 a = (2,1) 
r = (4,1)

 p = 1.0 

p = 0.5

 p = 0.5 

a = (2,2)
r = (1,1)

For each agent i we additionally define:

• a finite set of observation Oi

• an observation function {Oi}i∈I such that

Oi : A× S × Oi → [0, 1] and

∀a ∈ A, s ∈ S :
∑

oi∈Oi
Oi (a, s, oi ) = 1
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The Observation Function

POSG can represent diverse observability conditions. For example:

• modeling noise by adding uncertainty in the possible observation

• to limit the visibility region of agents (see LBF example)

• Here, the agent can only see some parts

of the state and joint action

• oti = (s̄t , āt) where s̄t ⊂ st , āt ⊂ at

24



Solution concepts for games



Solution Concepts for Games

MARL Problem
Game Model

e.g. normal-form game,
stochastic game, POSG

Solution Concept
e.g. Nash equilibrium,

social welfare, ...
= +

What does it mean to act optimally in a multi-agent system?

• Maximizing returns of one agent is no longer enough to determine a solution

• We must consider the joint policy of all agents

• This is less straightforward, and there are many different solution concepts

25



Nash Equilibrium

Nash equilibrium solution concept applies the idea of a mutual best response to

general-sum games with two or more agents.

• No agent i can improve its expected returns by changing its policy πi assuming other

agents policies remain fixed:

∀i , π′i : Ui (π
′
i , π−i ) ≤ Ui (π)

• Each agent’s policy is a best response to all other agent’s policies

• John Nash (1950) proved the existence of such a solution for general-sum

non-repeated normal-from games
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Nash Equilibrium in Matrix Games

C D

C -1,-1 -5,0

D 0,-5 -3,-3

Prisoners Dilemma

A B

A 10 0

B 0 10

Coordination Game

R P S

R 0,0 -1,1 1,-1

P 1,-1 0,0 -1,1

S -1,1 1,-1 0,0

Rock Paper Scissors

Can you identify the Nash equilibria?
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Nash Equilibrium in Matrix Games

C D

C -1,-1 -5,0

D 0,-5 -3,-3

Prisoners Dilemma
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A B

A 10 0

B 0 10

Coordination Game

Two NE’s at A, A (10) and

B, B (10)

R P S

R 0,0 -1,1 1,-1

P 1,-1 0,0 -1,1

S -1,1 1,-1 0,0

Rock Paper Scissors

NE is to choose actions

uniformly at random with

expected return 0

Can you identify the Nash equilibria?
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Shortcomings of Equilibrium Solutions

Equilibrium solutions are standard solution concepts in MARL, but have limitations.

• Sub-optimality:

• Nash equilibria do not always maximize expected returns

• E.g. in Prisoner’s Dilemma, (D,D) is Nash but (C,C) yields higher returns

• Non-uniqueness:

• There can be multiple (even infinitely many) equilibria, each with different expected

returns

• Incompleteness:

• Equilibria for sequential games don’t specify actions for off-equilibrium paths, i.e.

paths not specified by equilibrium policy Pr(ĥ|π) = 0

• If there is a temporary disturbance that leads to an off-equilibrium path, the equilibrium

policy π does not specify actions to return to a on-equilibrium path
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Refinement concepts



Pareto Optimality

To address some of these limitations, we can add additional solution requirements such as

Pareto optimality.

A joint policy π is Pareto-optimal if it is not Pareto-dominated by any other joint

policy. A joint policy π is Pareto-dominated by another policy π′ if

∀i : Ui (π
′) ≥ Ui (π) and ∃i : Ui (π

′) > Ui (π).

Intuition

A joint policy is Pareto-optimal if there is no other joint policy that improves the

expected return for at least one agent without reducing the expected return for any

other agent.

29



Social Welfare and Fairness

To further constrain the space of desirable solutions, we can consider social welfare and

fairness concepts.

Welfare optimality:

W (π) =
∑
i∈I

Ui (π)

• A joint policy π is welfare-optimal if π ∈ arg maxπ′W (π′)

Fairness optimality:

F (π) =
∏
i∈I

Ui (π), Ui (π) > 0 ∀i

• A joint policy π is fairness-optimal if π ∈ arg maxπ′ F (π′)
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MARL learning framework



Single-Agent RL Reductions

The simplest way to apply RL algorithms in multi-agent settings is to reduce them to

single-agent problems.

Central learning:

• Apply one single-agent RL algorithm to control all agents centrally

⇒ A central policy is learned over the joint action space

• What is the central reward? Scaling!

Independent learning:

• Apply single-agent RL algorithms to each agent independently

⇒ Agents do not explicitly consider or represent each other

• Possibly suboptimal.

31
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MARL Challenges

Singe-Agent RL Challenges

• Unknown environment dynamics

• Exploration-exploitation dilemma

• Non-stationarity from bootstrapping

• Temporal credit assignment

Multi-Agent RL Challenges

• Non-stationarity from multiple learning

agents

• Equilibrium selection

• Multi-agent credit assignment

• Scaling to many agents

32
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Modes of Operation in MARL

Modes of operation in MARL:

Self-play:

• Algorithm self-play: all agents use the same learning algorithm (and parameters)

• Policy self-play: agent’s policy is trained directly against itself

Mixed-play:

• Agents use different learning algorithms
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Agent modeling



Agent Modeling & Best Response

Game theory solutions are normative: they prescribe how agents should behave

• e.g. minimax assumes worst-case opponent

What if agents don’t behave as prescribed by solution?

• e.g. minimax-Q was unable to exploit hand-built opponent in soccer example

Other approach: agent modeling with best response

• Learn models of other agents to predict their actions

• Compute optimal action (best response) against agent models

34
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Joint Action Learnng with Agent modeling in Level-Based Foraging
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Deep MARL



Challenges of Multi-Agent Reinforcement Learning

Reminder

MARL algorithms suffer from multi-agent specific challenges:

• Non-stationarity: exacerbated due to changing policies of all agents

• Equilibrium selection: how to converge to a stable equilibrium?

• Multi-agent credit assignment: how to attribute rewards to agents’ actions?

• Scaling to many agents: how to efficiently scale to large numbers of agents?

Centralised training with decentralised execution (CTDE) can help address some of these

challenges.
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The Multi-Agent Policy-Gradient Theorem

Solution

In MARL, the expected returns of agent i under its policy πi depends on the poli-

cies of all other agents π−i → the multi-agent policy gradient theorem defines an

expectation over the policies of all agents (hi : individual observation history):

∇φi J(φi ) ∝ Eĥ∼Pr(ĥ|π),ai∼πi ,a−i∼π−i

[
Qπ

i (ĥ, 〈ai , a−i 〉)∇φi log πi (ai | hi = σi (ĥ);φi )
]

Derive policy update rules by finding estimators for expected return Qπ
i (ĥ, 〈ai , a−i 〉)

Independent Advantage AC (A2C) estimates Adv(hi , ai ) ≈ Qπ
i (ĥ, 〈ai , a−i 〉)

But can we do better? Perhaps by leveraging more information?
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i (ĥ, 〈ai , a−i 〉)

Independent Advantage AC (A2C) estimates Adv(hi , ai ) ≈ Qπ
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∇φi J(φi ) ∝ Eĥ∼Pr(ĥ|π),ai∼πi ,a−i∼π−i

[
Qπ
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]

Derive policy update rules by finding estimators for expected return Qπ
i (ĥ, 〈ai , a−i 〉)

Independent Advantage AC (A2C) estimates Adv(hi , ai ) ≈ Qπ
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Centralized Critics

Note

In actor-critic algorithms, only the policy/actor is used during execution and the

critic is used only during training → the critic can be conditioned on centralised

information z without compromising decentralised execution.

This might include:

• Global state s

• Joint action a

• Joint observation history h

• . . .
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Agent Modeling with Deep Learning



Agents Modeling – Motivation

In MARL, agents need to consider the policies of other agents to coordinate their actions.

Approaches presented so far account for the action selection of other agents through:

• Distribution of training data is dependent on the policies of all agents

• Training centralized critics conditioned on the actions of other agents

Can we provide agents with more explicit information about the policies of other

agents so they can learn to coordinate better, e.g. by learning best-response policies?
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Joint-Action Learning with Deep Agent Models in LBF

(a) Environment
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Self-Play Monte Carlo Tree Search

In zero-sum games with symmetrical roles and egocentric observations, agents can use

the same policy to control both players

→ learn a policy in self-play

(a) Agent 1 perspective (b) Agent 2 perspective
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Population-Based Training – Self-Play for General-Sum Games

Problem

With MCTS, we focused on policy self-play in two-agent zero-sum games. Can we

extend the idea of self-play to general-sum games with more than two agents?

Population-based training is a generalisation of self-play to general-sum games:

• Maintain a population of policies representing possible strategies of the agent

• Evolve populations so they become more effective against the populations of other

agents

• We denote the population of policies for agent i at generation k as Πk
i .
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The MARL Book

This lecture was based on

Multi-Agent Reinforcement Learning:

Foundations and Modern Approaches

by Stefano V. Albrecht, Filippos Christianos and

Lukas Schäfer

MIT Press, 2024

Download book, slides, and code at:

www.marl-book.com
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Outlook: Whither RL?



Current challenges in RL

• DRL, POMDP, MARL, MORL, IRL, ...

• Sample complexity, exploration, stability, robustness, generalisation, reproducibility

• Problem characteristics, Meta-RL, transfer learning, reward shaping, RL + LLM

• Data-based (off-line) RL, sim-to-real gap, latency, learning from many policies

• Biological RL, population-based methods, naturalistic RL (Wise e.a., 2024)

• Safe RL, human-in-the-loop RL, grounded RL, interdisciplinary problems

• Applications: Industry size of RL: £100B (2025) growth rate 65% (rough estimates!).
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