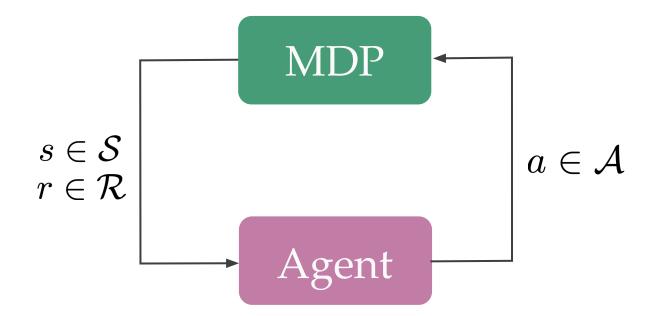
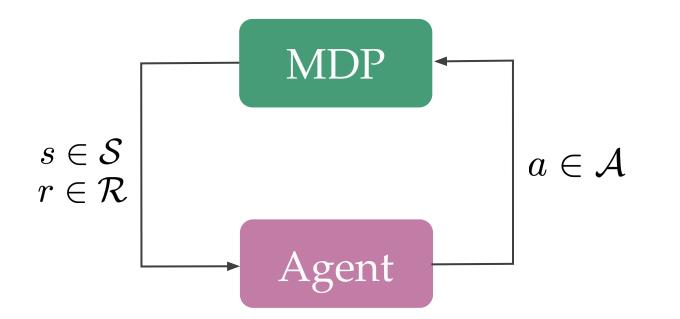
Reinforcement Learning

Beyond the Markov Property

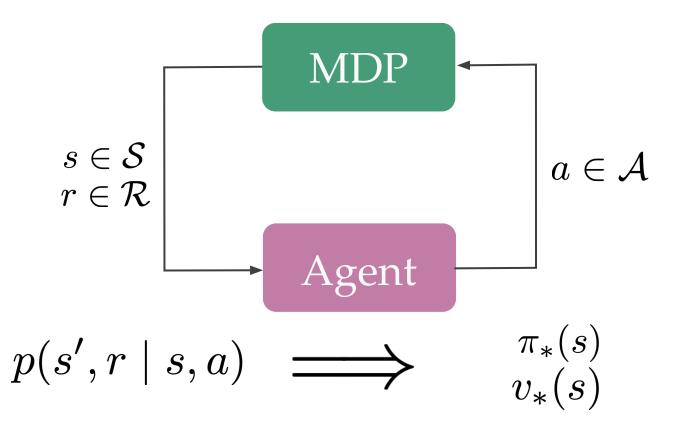
<u>David Abel</u>, Michael Herrmann 11 March, 2025

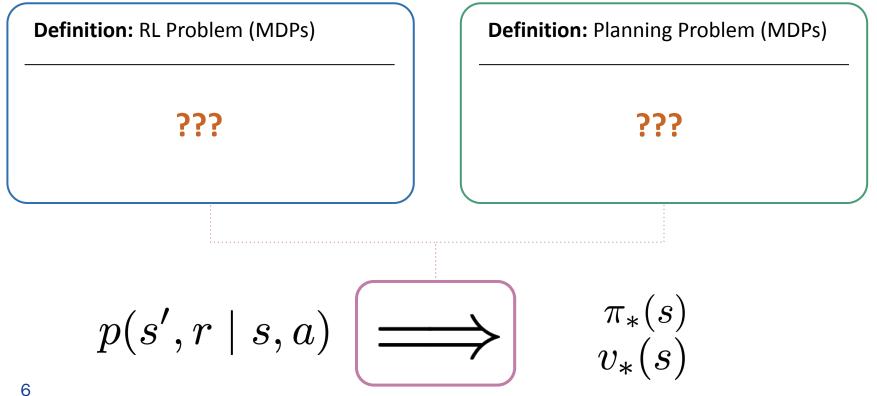
- 1. A Refresh: Markov, State
- 2. POMDP: Partially Observable MDPs
- 3. AIXI
- 4. The Big World Hypothesis





Q: What does the Markov Property grant us as agent designers?





Definition: RL Problem (MDPs)

Given: \mathcal{S}, \mathcal{A} , query access to p

Repeat, for t = 0, 1, ...

- 1. Agent selects action $A_t \in \mathcal{A}$
- 2. Agent observes

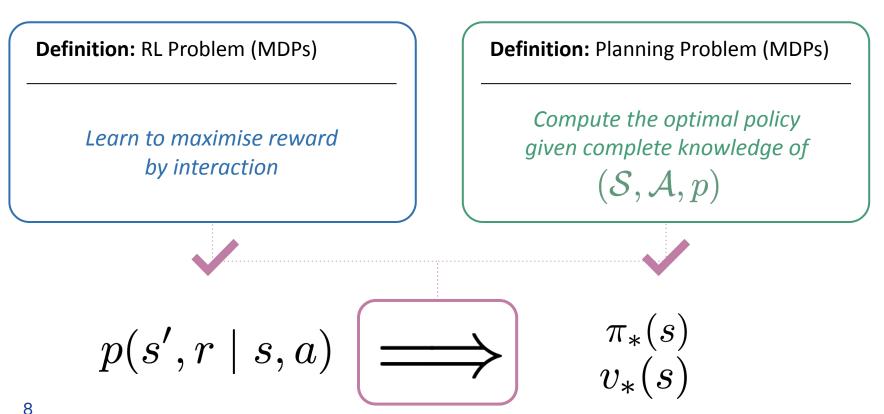
 $S_t, R_t \sim p(s', r \mid s, a)$

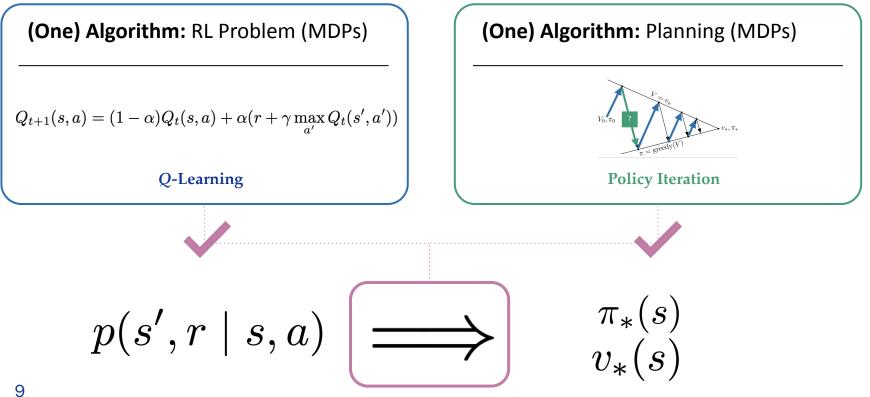
Goal: maximise total reward.

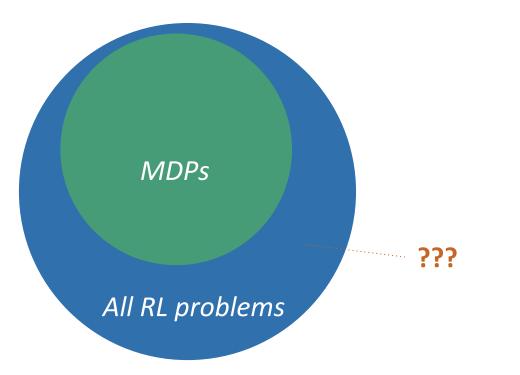
Definition: Planning Problem (MDPs)

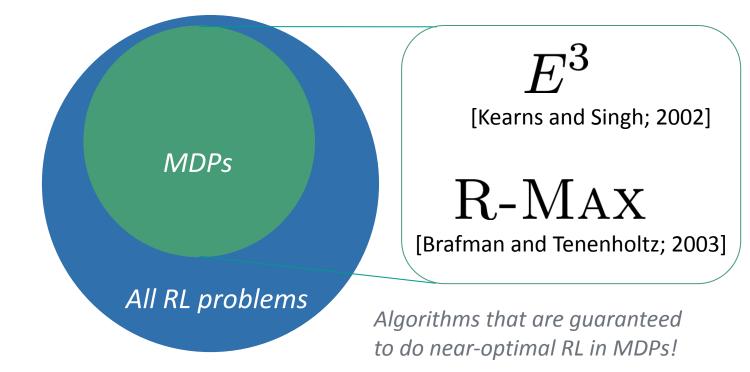
Given: an MDP, $(\mathcal{S}, \mathcal{A}, p)$

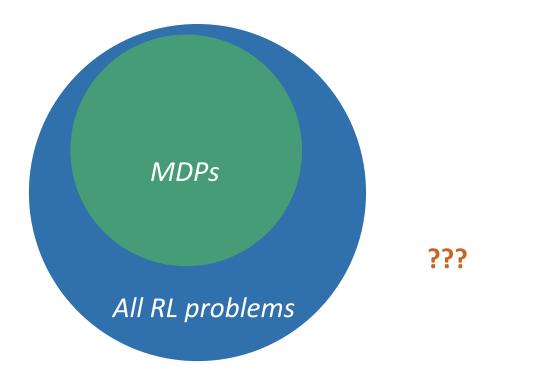
Output: An optimal policy, π









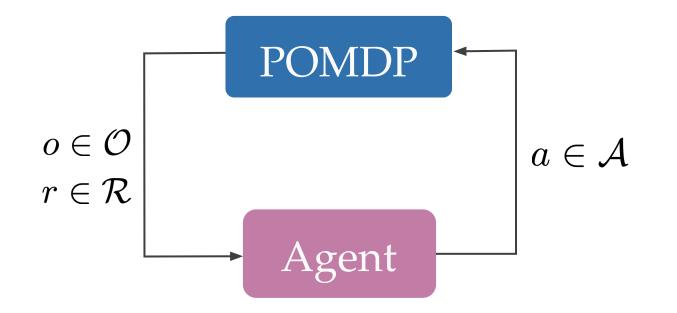


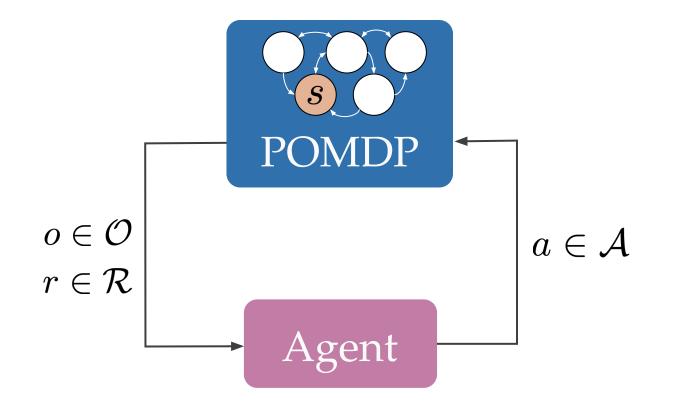
Partially Observable MDPs (POMDPs)

$p(s' \mid s, a)$ State transition function r(s, a) Reward function

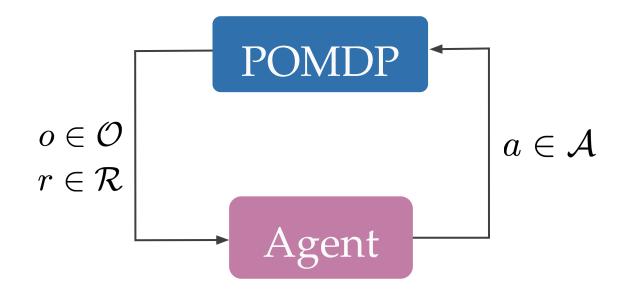
Partially Observable MDPs (POMDPs)

 \mathcal{S} A set of states \mathcal{A} A set of actions \mathcal{O} A set of observations $p(s' \mid s, a)$ State transition function r(s,a)Reward function $\omega(o \mid s, a)$ **Observation** function





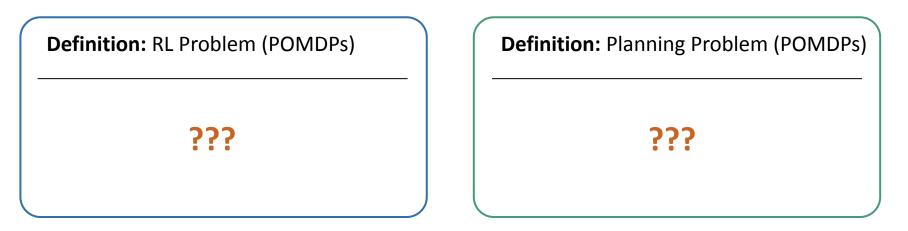
Solving POMDPs: RL and Planning



Definition: RL Problem (POMDPs)

Definition: Planning Problem (POMDPs)

Partially Observable MDPs (POMDPs)



Discussion (2 minutes):

What is the RL problem in POMDPs?What is the planning problem in POMDPs?(if time): Do our MDP algorithms work in either?

RL and Planning in POMDPs

Definition: RL Problem (POMDPs)

Given: $(\mathcal{S}, \mathcal{A}, \mathcal{O})$, query access to e

Repeat, for t = 0, 1, ...

- 1. Agent selects action $A_t \in \mathcal{A}$
- 2. Agent observes

 $O_t, R_t \sim e(o, r \mid s, a)$

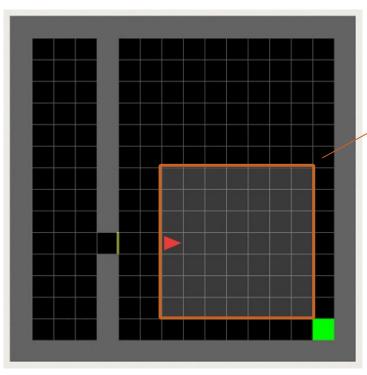
Goal: maximise total reward.

Definition: Planning Problem (POMDPs)

Given: an POMDP,
$$(\mathcal{S}, \mathcal{A}, \mathcal{O}, p, r, \omega)$$

Output: An optimal policy, π

POMDP Example



state = (x,y, agent-direction)
observation = (7x7 grid, agent-direction)

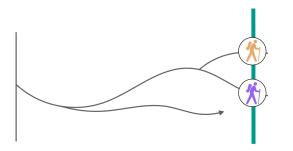
Q: How many environment states *could* the agent be in, while seeing this o, roughly?

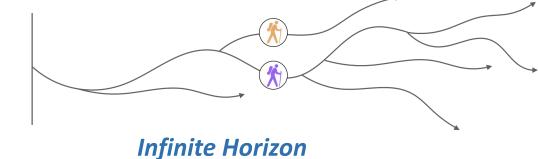
Finite vs. Infinite Horizon

Definition: Planning Problem (POMDPs)

Given: an POMDP, $(\mathcal{S}, \mathcal{A}, \mathcal{O}, p, r, \omega)$

Output: An optimal policy, π





Finite Horizon

Theorem. Planning in infinite horizon POMDPs is undecidable.

[O. Madani, S. Hanks, A. Condon; 2003]

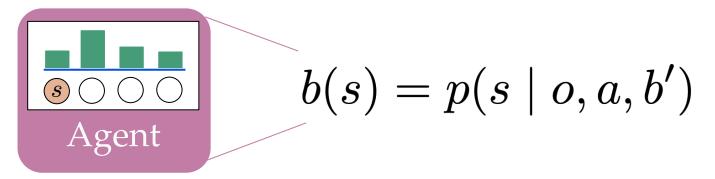
Theorem. Planning in **finite horizon POMDPs**, is **PSPACE-complete**

[Papadimitriou, Tsitsiklis; 1987]

Takeaway: Planning in POMDPs is hard!

Learning in POMDPs: Approximate

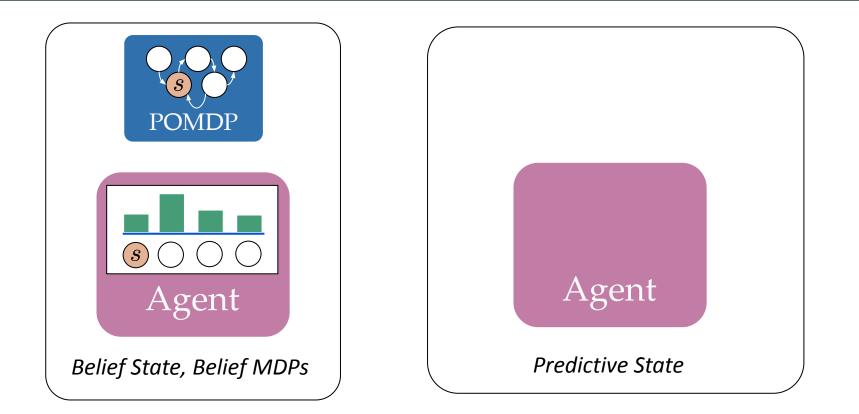
- Belief state complexity can be independent of env.
- Maintained via Bayes
- Value function can be function of belief state



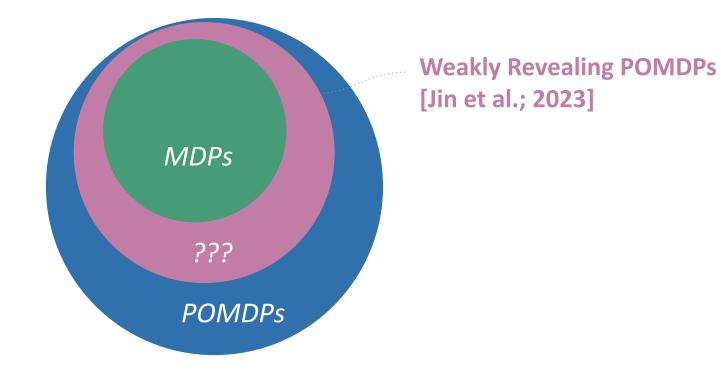
Belief State, Belief MDPs

[Kaelbling, Littman, Cassandra; 1996]

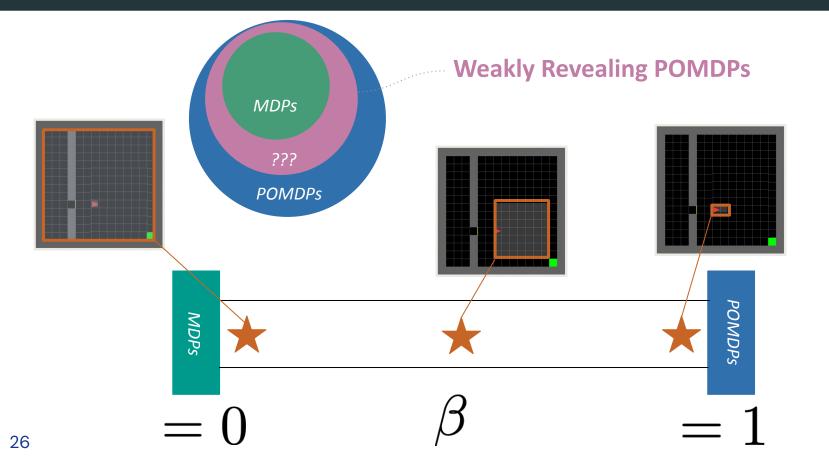
Learning in POMDPs: Approximate

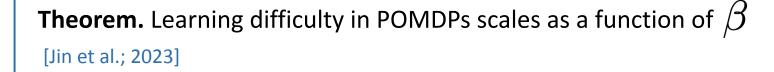


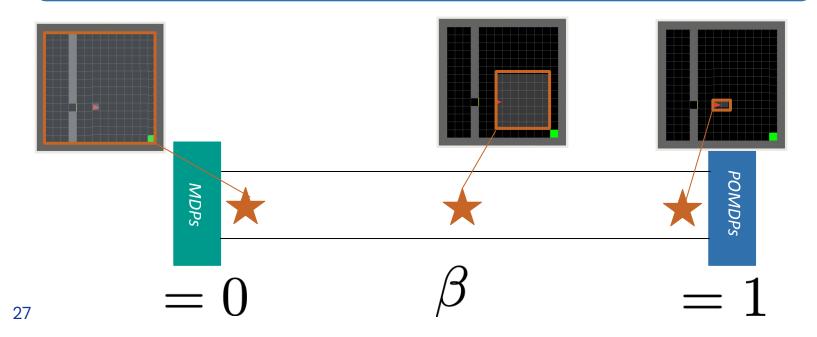
What Makes a POMDP Hard?



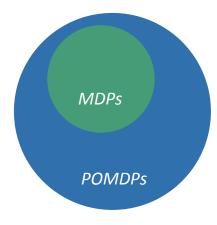
Weakly Revealing POMDPs



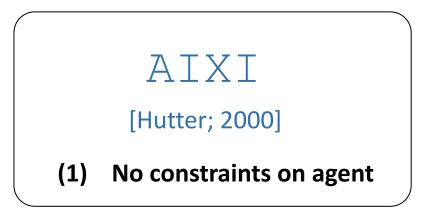




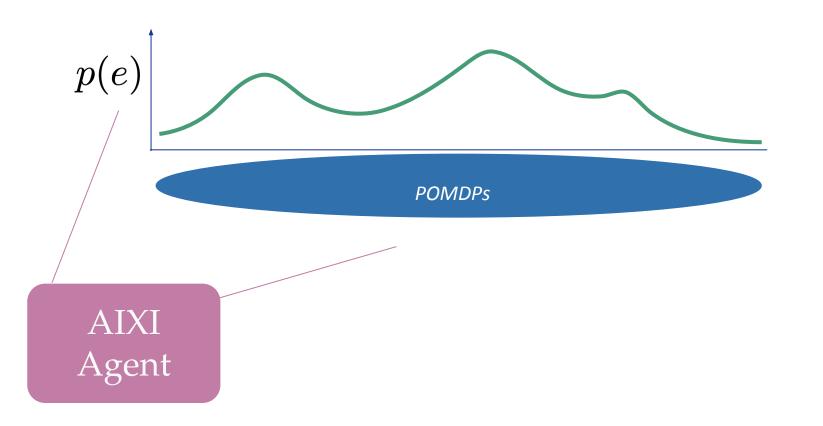
General POMDPs



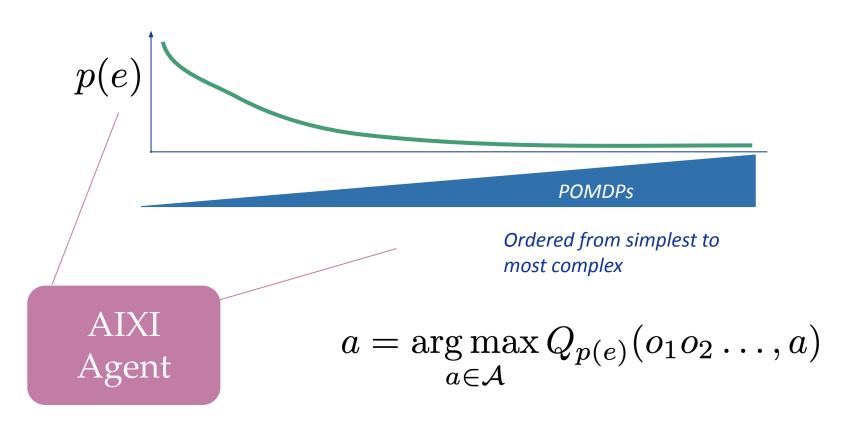
Q: Learning in *all* POMDPs? Any RL problem?



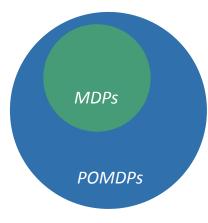
AIXI



AIXI



General POMDPs

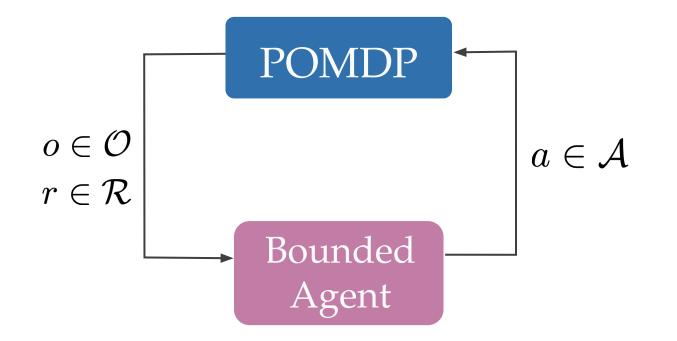


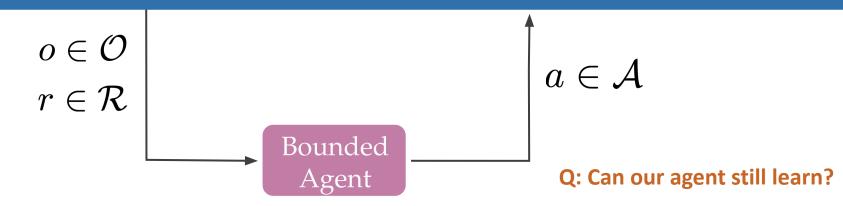
Q: Learning in *all* POMDPs? Any RL problem?

AIXI [Hutter; 2000]

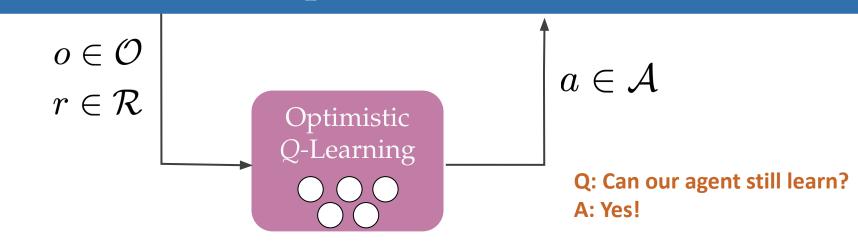
(1) No constraints on agent

Simple Agent, Complex Environment [Dong et al.; 2022] (2) Finite agent





Complex World

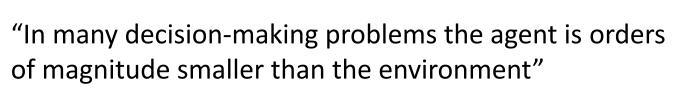


Theorem. Bounded optimistic *Q*-learning will perform only f(agent size, env. complexity) worse than the *best unbounded agent*. [Dong et al.; 2022]

Optimistic Q-Learning

Q: Can our agent still learn? A: Yes!

The Big World Hypothesis

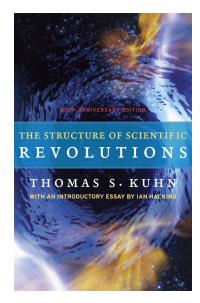


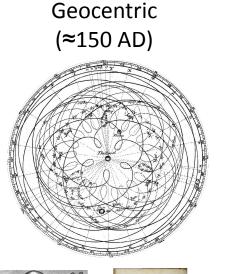
- Javeed, Sutton (2024)

Bounded rationality -Simon All models are wrong, some are useful -Box

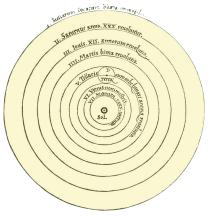
Open-endedness -Lehman and Stanley

RL: The Road Ahead



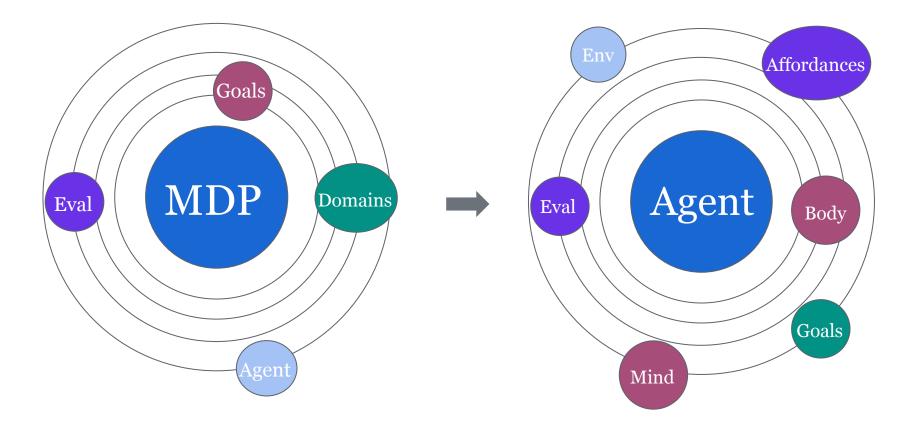


Heliocentric (≈1500 AD)



+ Mechanics, germ theory, ...

RL: The Road Ahead



RL: The Road Ahead

RL as the science of *learning to act*

Feedback: tinyurl.com/dave-feedback

My Last Lecture

Thank you!

Optional Reading

POMDPs

- Learning Without State-Estimation in Partially Observable Markovian Decision Processes by Singh, Jaakola, Jordan (1994)
- *Planning and Acting in Partially Observable Stochastic Domains* by Kaelbling, Littman, Cassandra (1996)
- *Predictive Representations of State* by Littman, Sutton, Singh (2001)

Big Worlds, AIXI

- A Monte Carlo AIXI Approximation by Veness et al. (2010)
- Simple Agent, Complex Environment by Dong, Zhou, Van Roy (2022)
- The Big World Hypothesis and its Ramifications for AI by Javeed and Sutton (2024)
- The Alberta Plan, by Sutton, Pilarski, Bowling (2022)