Reinforcement Learning

Multi-Armed Bandits

<u>David Abel</u>, Michael Herrmann Based on slides by Stefano V. Albrecht 17 January 2025

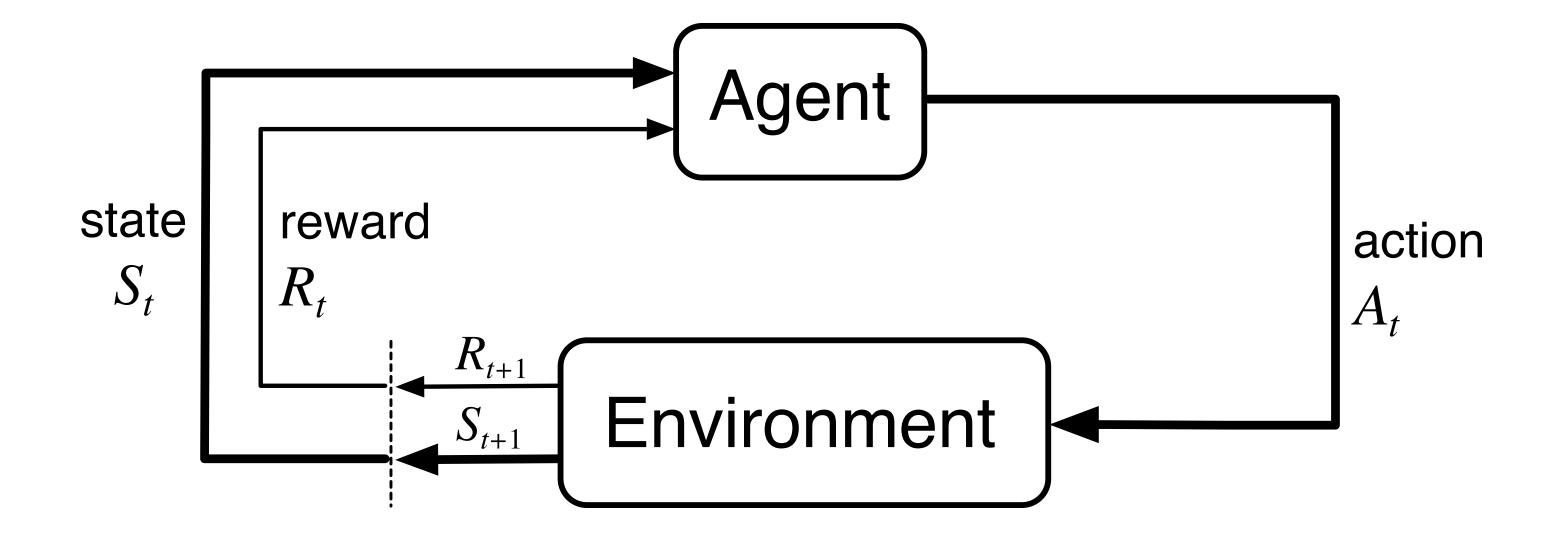
Lecture Outline

- 1. Recap: What is RL? A Demo
- 2. Simplest RL problem: Multi-armed bandits
- 3. Explore-exploit dilemma
- 4. Algorithms for multi-armed bandits: UCB

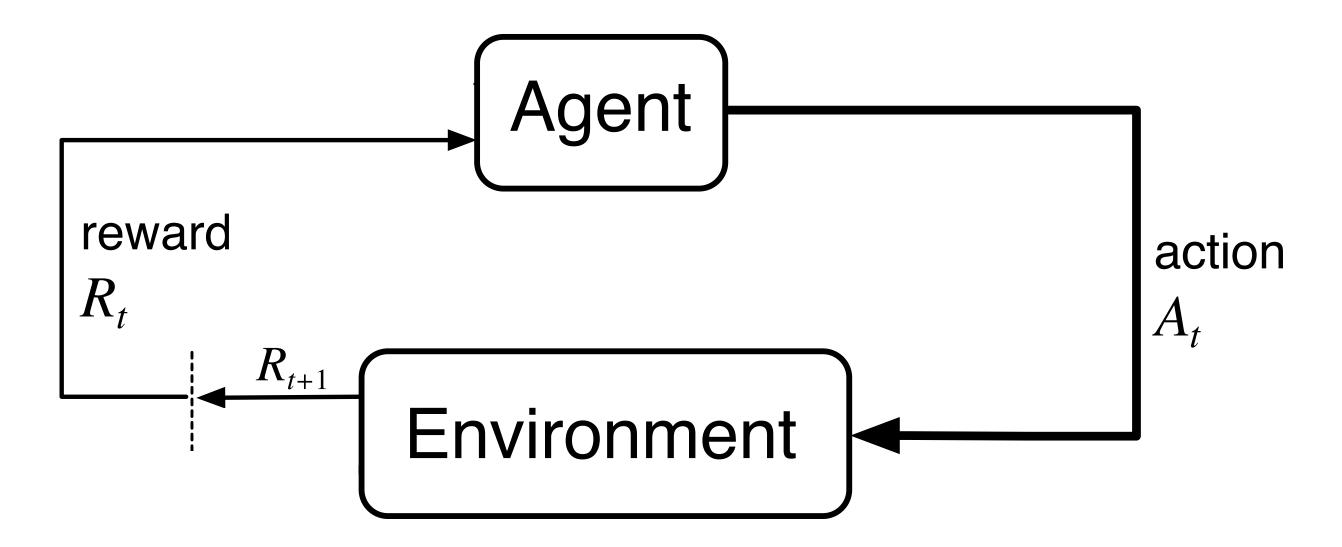
The Big Picture: What is RL?

Learning to act

The Reinforcement Learning Loop



Multi-Armed Bandit: RL Without State



Multi-Armed Bandits: Notation

- Random Variables: capital italics, such as

$$A, R, A_t, R_t$$

- Realisations of these variables: lower case, such as

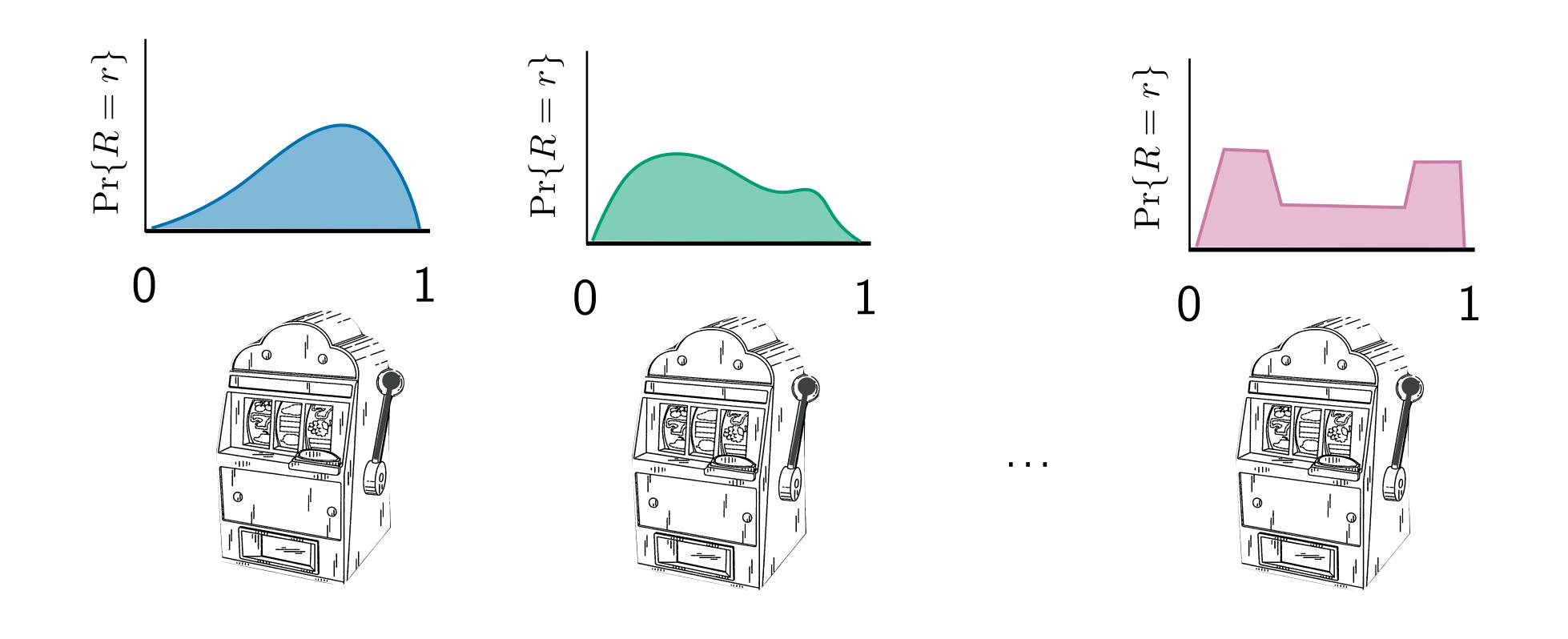
$$a, r, a_t, r_t$$

$$\Pr\{A_t = a_t\}$$

- Sets: script capitals, intervals, blackboard, such as

$$\mathcal{A}, [0, 1], \mathbb{N}$$

Multi-Armed Bandits



Formal Definition

Definition (Multi-Armed Bandit Problem):

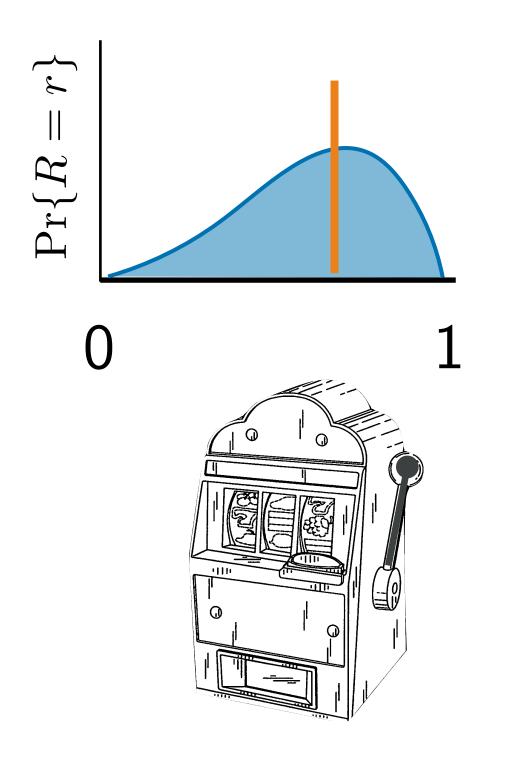
Given: a set of k actions, \mathcal{A} , number of rounds T .

Repeat for t in T rounds:

- 1. Algorithm selects arm $A_t \in \mathcal{A}$
- 2. Algorithm observes reward $R_t \in [0, 1]$

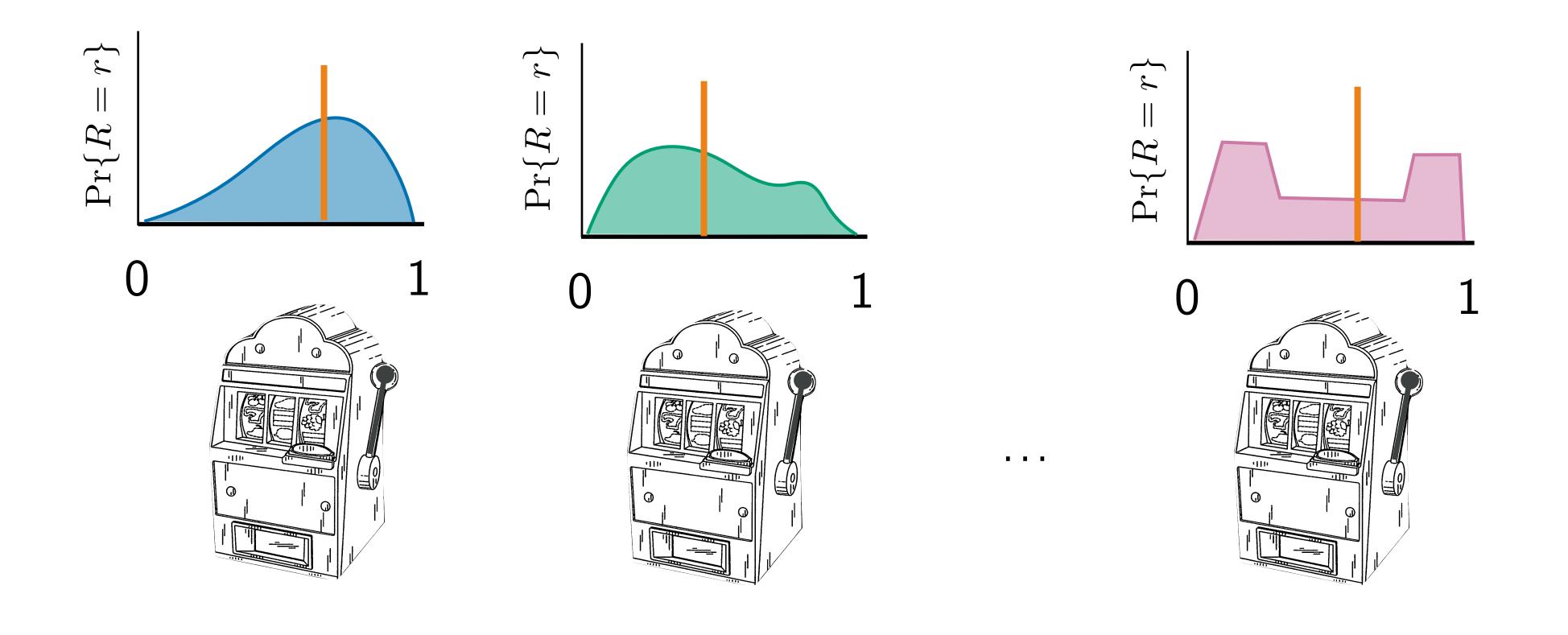
Goal: maximise expected total reward.

Value: The Expected Reward



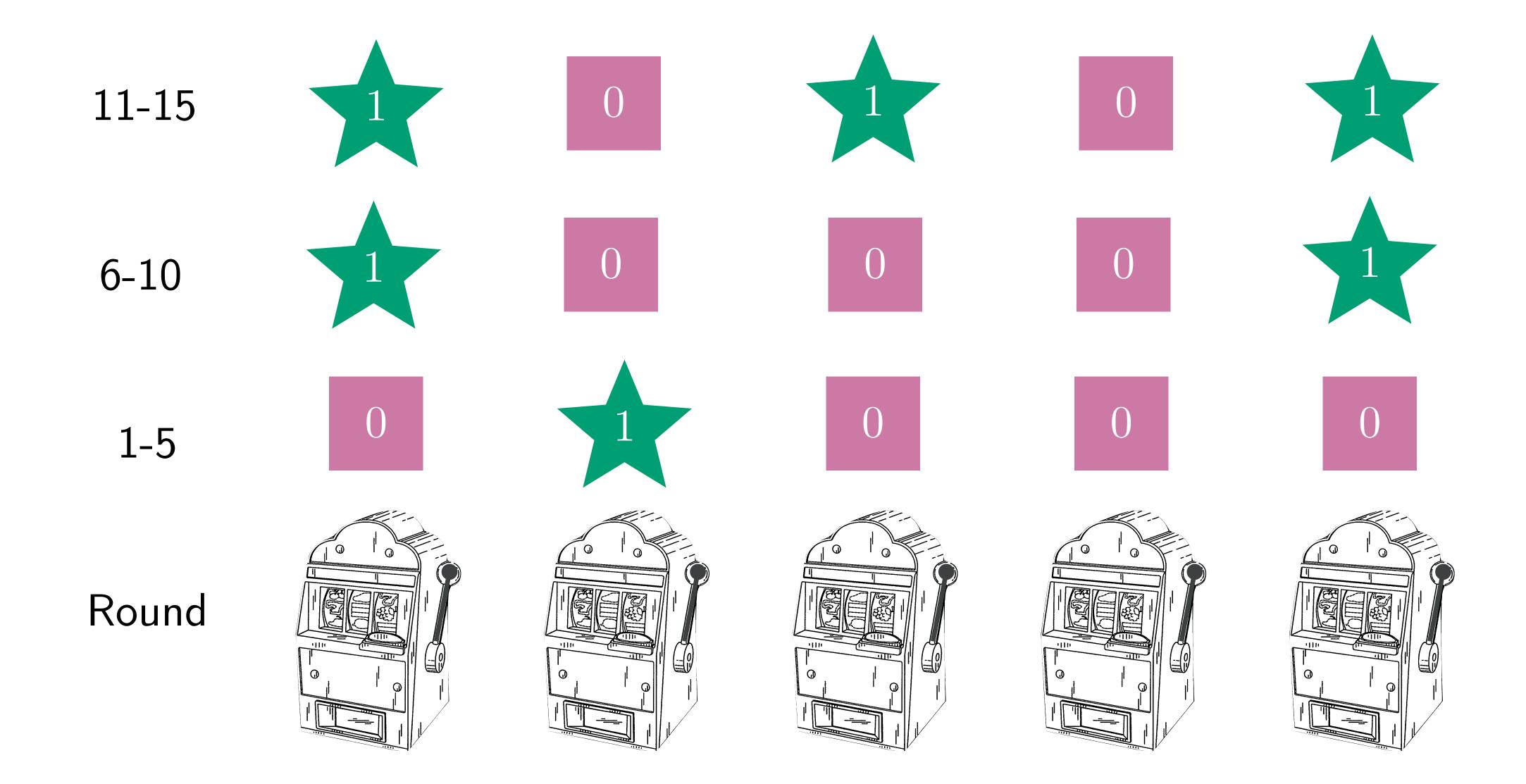
$$\boxed{q_*(a) = \mathbb{E}[R_t \mid A_t = a]}$$
 Value of arm

Multi-Armed Bandits

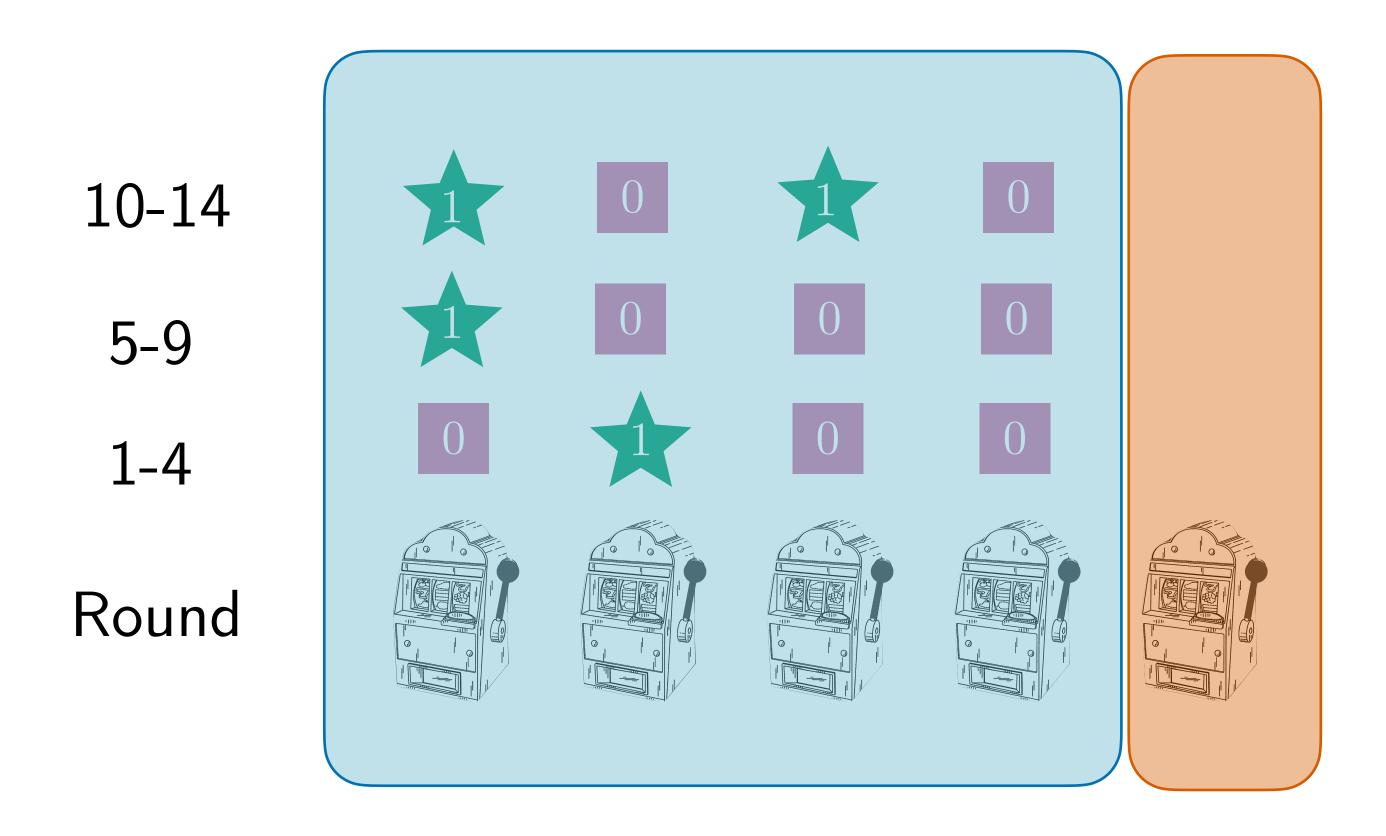


$$q_*(a) = \mathbb{E}[R_t \mid A_t = a]$$

A Typical Run:



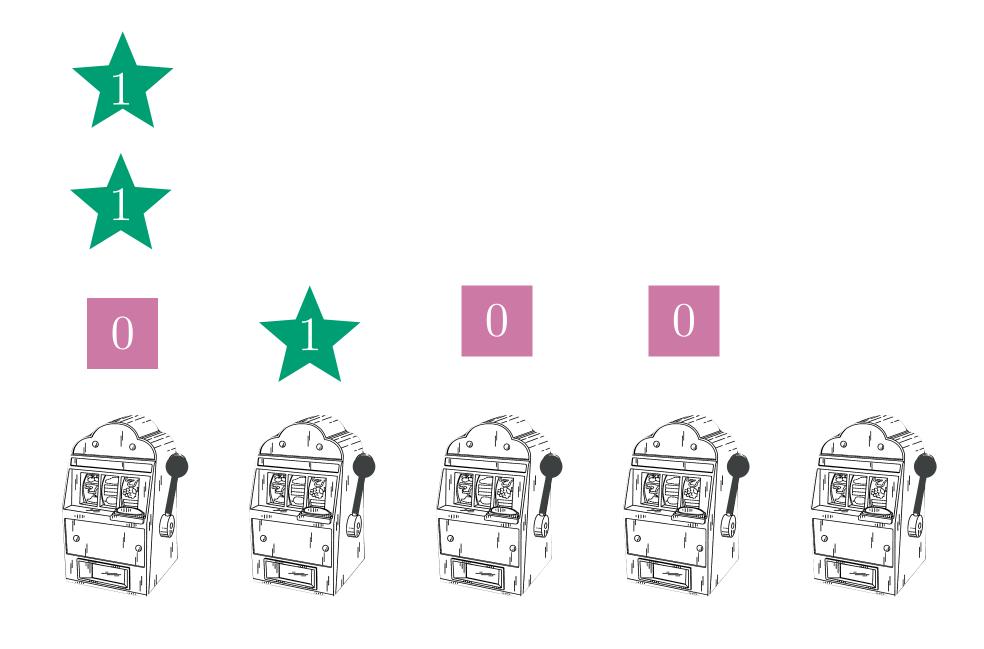
The Explore-Exploit Dilemma



Exploit: Pick best option so far

Explore: Learn more about other options

The Explore-Exploit Dilemma: Always Present, After t=1



Exploit: Pick best option so far

Explore: Learn more about other options

The Explore-Exploit Dilemma

Definition (Explore-Exploit Dilemma):

How to balance exploration and exploitation to maximise long-term rewards?

Exploit: Pick best option so far **Explore:** Learn more about other options

The Explore-Exploit Dilemma

Definition (Explore-Exploit Dilemma):

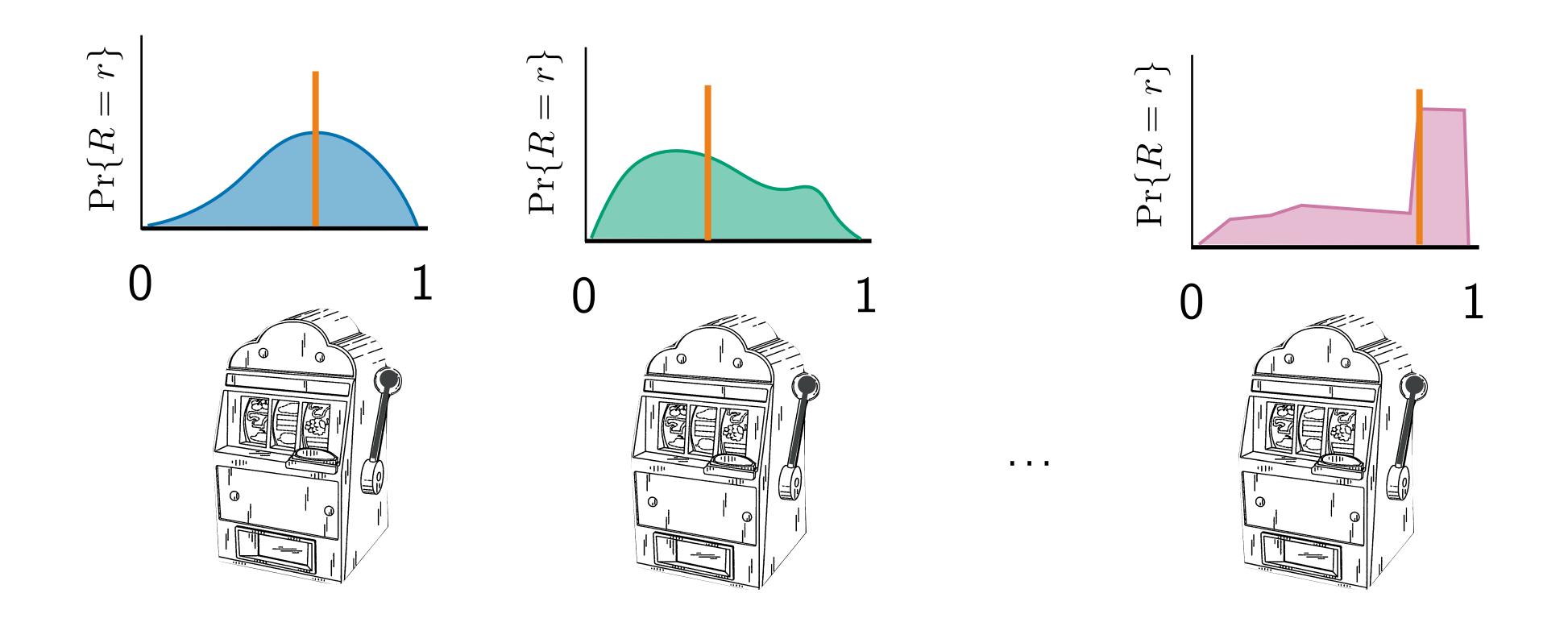
How to balance exploration and exploitation to maximise long-term rewards?

Discussion (2 minutes):

Why will pure-exploration or pure-exploitation fail?

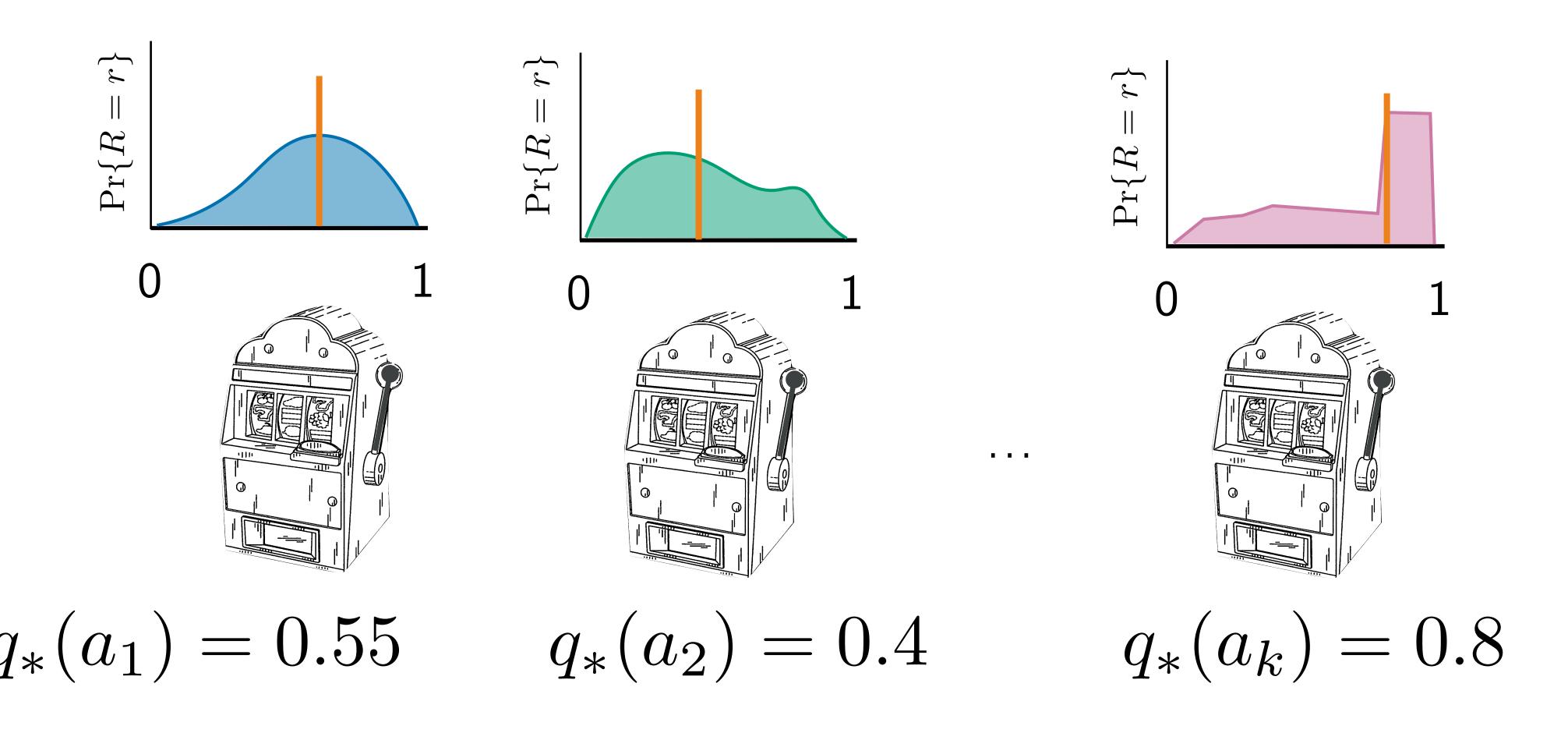
How might you balance between the two?

MAB Approach 1: Action-Value Methods

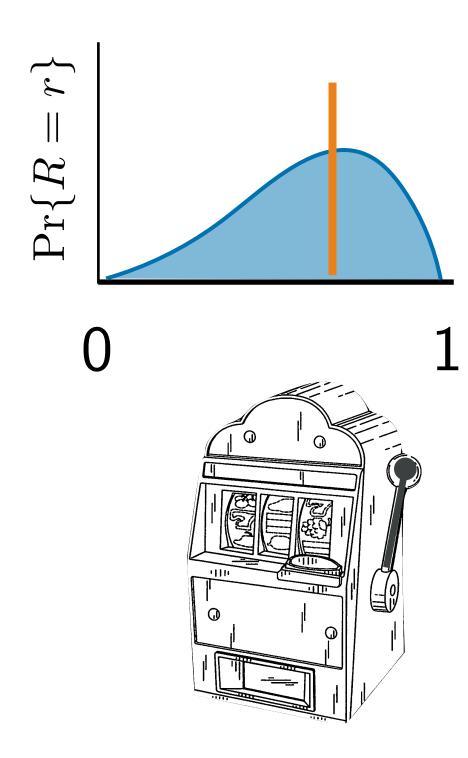


$$q_*(a) = \mathbb{E}[R_t \mid A_t = a]$$

MAB Approach 1: Action-Value Methods



Estimating the Action-Value

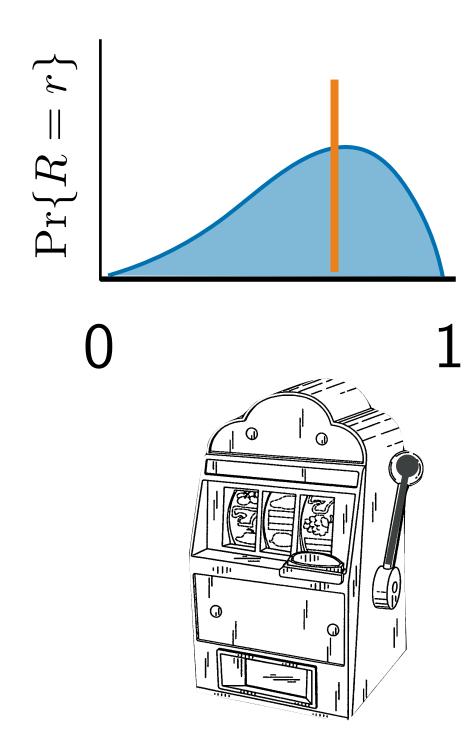


Main Idea: Estimate the value of each arm!

$$Q_t(a) = rac{Sum\ of\ rewards\ when\ taken\ a\ so\ far}{Number\ of\ times\ taken\ a\ so\ far}$$

$$Q_t(a) = \frac{1}{N_t(a)} \sum_{\tau=1}^{t-1} R_{\tau} \cdot \mathbb{1}_{A_t=a}$$

Estimating the Action-Value

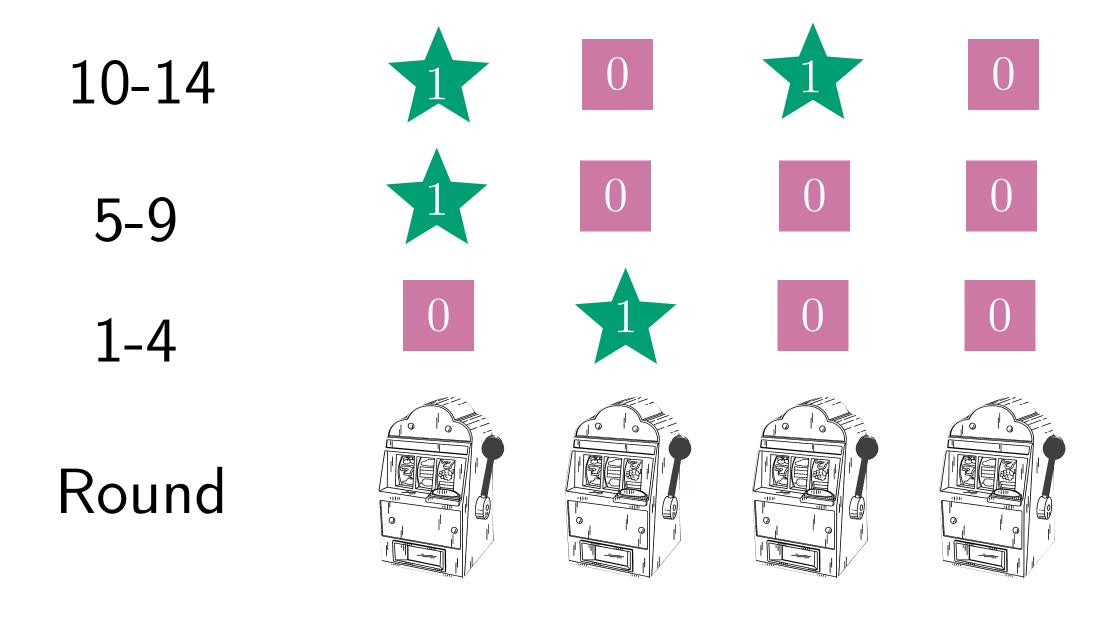


Sample average converges in the limit

$$\lim_{N_t(a)\to\infty} Q_t(a) = q_*(a)$$

$$Q_t(a) = \frac{1}{N_t(a)} \sum_{\tau=1}^{t-1} R_{\tau} \cdot \mathbb{1}_{A_t=a}$$

How to Explore, Exploit



Exploit: Pick best option so far

$$A_t = A_t^* = \arg\max_a Q_t(a)$$
Greedy action selection

Explore: Learn more about other options

$$A_t \sim \mathrm{Unif}(\mathcal{A})$$

Random action selection

MAB Algorithm 1: E - greedy Action Selection

Algorithm: ϵ -greedy

$$0 Q_1(a), N_1(a) = 0, \forall a \in \mathcal{A}$$

1 For each round t in T:

$$A_t = \begin{cases} A_t^* & \text{Pr } 1 - \epsilon \\ \text{Unif}(\mathcal{A}) & \text{otherwise} \end{cases}$$

- 3 Execute A_t , observe R_t
- 4 Update $N_t(a)$, $Q_t(a)$

Exploit: Pick best option so far

$$A_t = A_t^* = \arg\max_a Q_t(a)$$

Greedy action selection

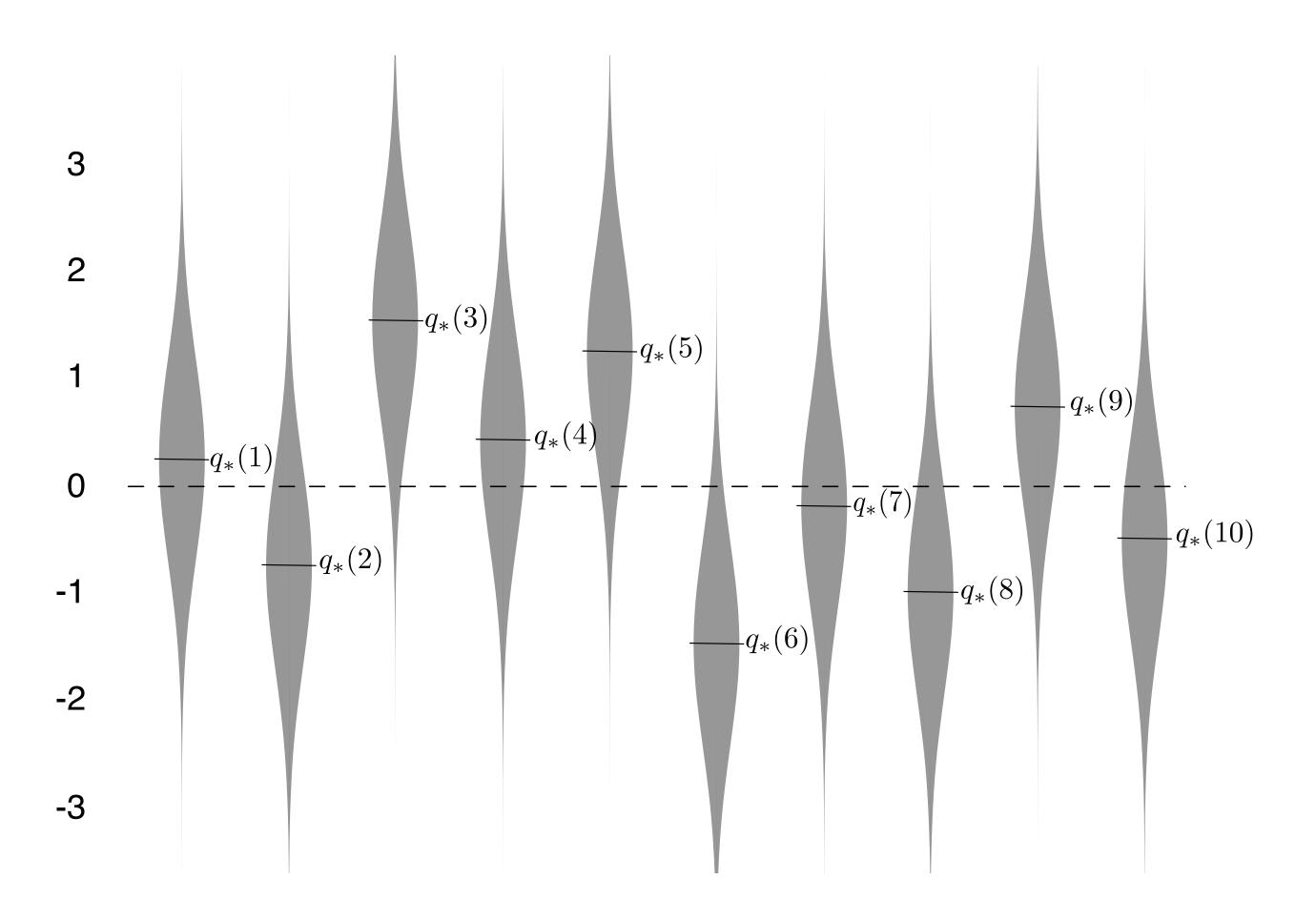
Explore: Learn more about other options -

$$A_t \sim \mathrm{Unif}(\mathcal{A})$$

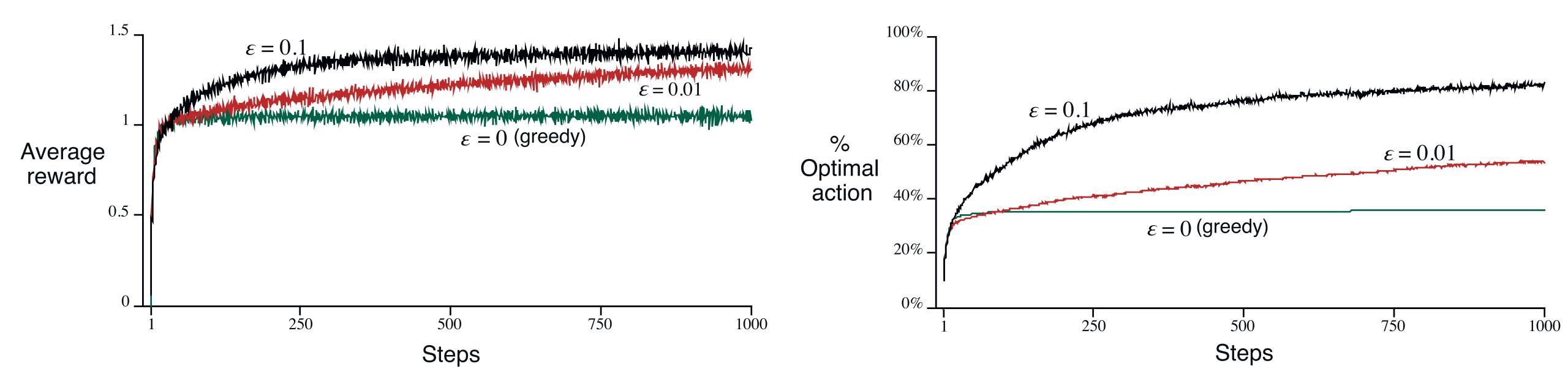
Random action selection

MAB Experiment: Setup

2000 random MABs each with 10 arms normal reward dist. each 1000 rounds



MAB Experiment: Results



Where is $\epsilon = 0.1$ after

10,000 time steps?

Incremental Learning Rule

Sample average (focusing on a single action):

$$Q_n = \frac{R_1 + R_2 + \ldots + R_{n-1}}{n-1}$$

Can compute incrementally to avoid recomputing:

$$Q_{n+1} = Q_n + \frac{1}{n} [R_n - Q_n]$$

Learning Rules

Standard form for update rules in RL

NewEstimate <— OldEstimate + StepSize[Target - OldEstimate]

Can compute *incrementally* to avoid recomputing:

$$Q_{n+1} = Q_n + \frac{1}{n} [R_n - Q_n]$$

Simple Bandit Algorithm

A simple bandit algorithm

```
Initialize, for a = 1 to k:
Q(a) \leftarrow 0
```

$$N(a) \leftarrow 0$$

Loop forever:

$$A \leftarrow \begin{cases} \operatorname{arg\,max}_a Q(a) & \text{with probability } 1 - \varepsilon \\ \operatorname{a \ random \ action} & \text{with probability } \varepsilon \end{cases}$$
 (breaking ties randomly)

$$R \leftarrow bandit(A)$$

$$N(A) \leftarrow N(A) + 1$$

$$Q(A) \leftarrow Q(A) + \frac{1}{N(A)} \left[R - Q(A) \right]$$

Non-Stationary Problems

Issue: Suppose the true action values shift over time:

- This problem is then called non-stationary
- Sample average alone is no longer appropriate (why?)
- Very common issue in RL!

Solution: track action values using a step-size parameter, $\,lpha\in(0,1]$

$$Q_{n+1} = Q_n + \alpha [R_n - Q_n]$$

Stochastic Approximation Convergence Conditions

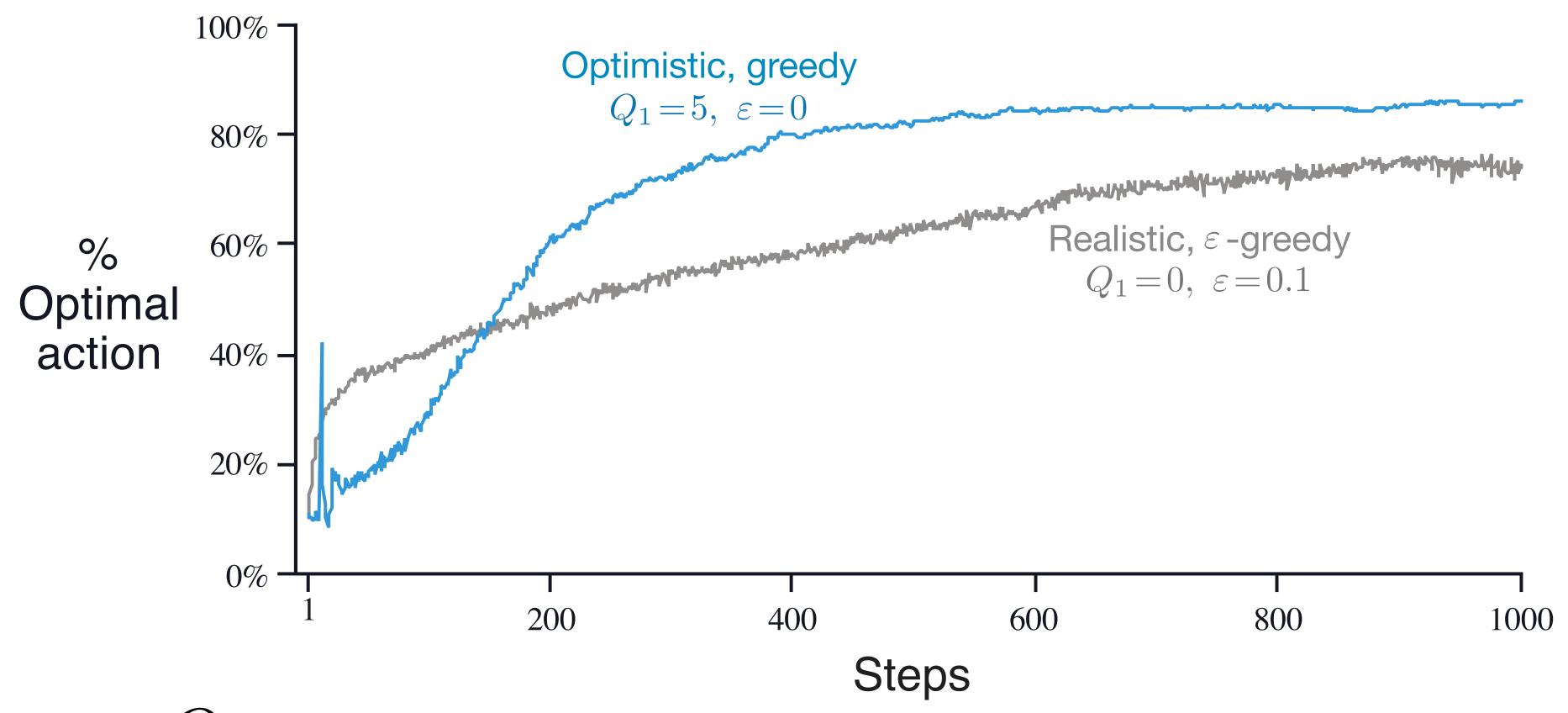
Estimates Q_n will converge with probability 1 to q_st if:

$$\sum_{n=1}^{\infty} \alpha_n(a) \to \infty \qquad \text{and} \qquad \sum_{n=1}^{\infty} \alpha_n^2(a) < \infty$$

Based on a classical result by Robbins and Monro (1951)

Works:
$$\alpha_n = \frac{1}{n}$$
 Not: $\alpha_n = c$, $\alpha_n = \frac{1}{n^2}$

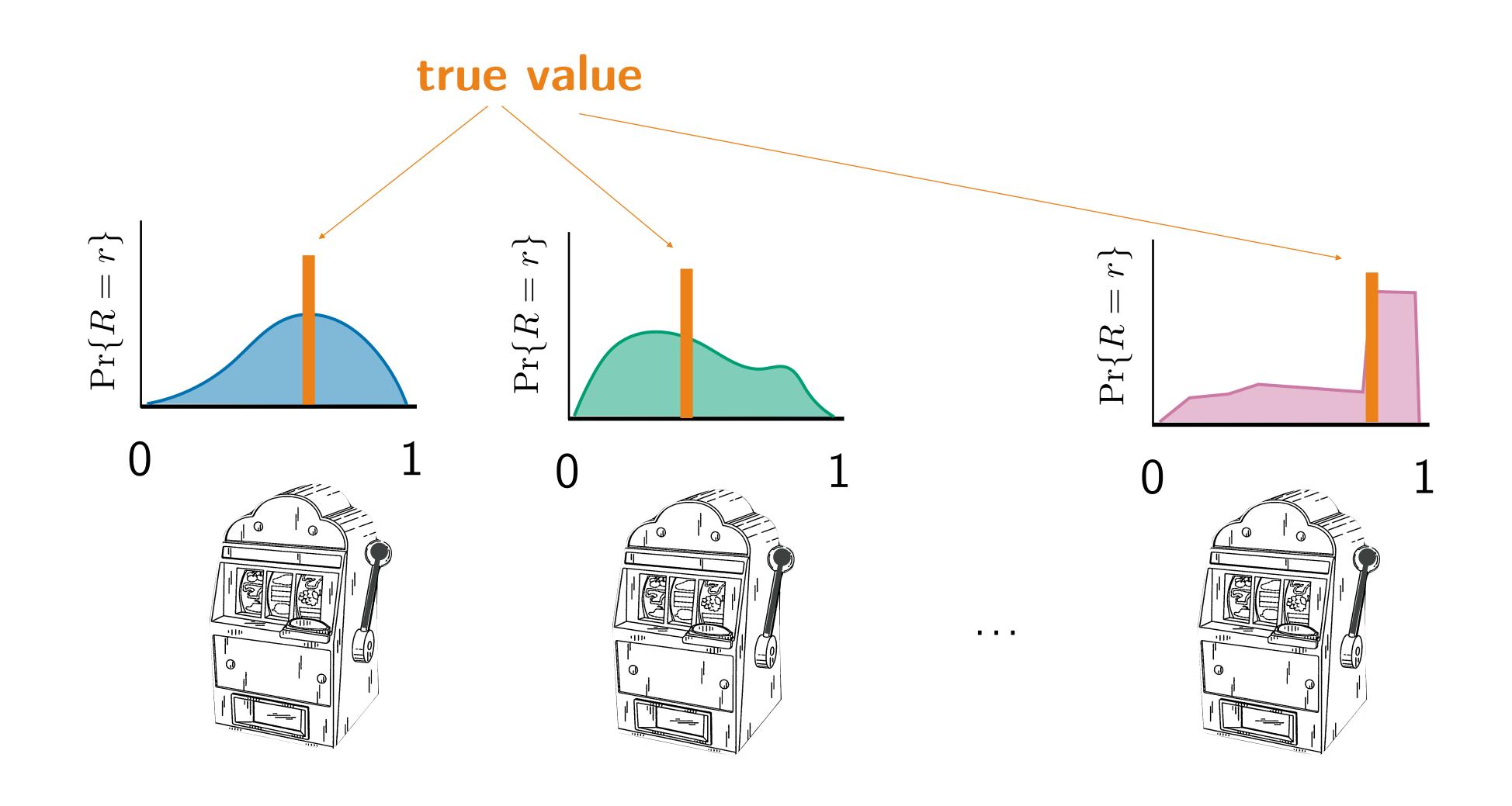
Explore-Exploit Principle: Optimism Under Uncertainty



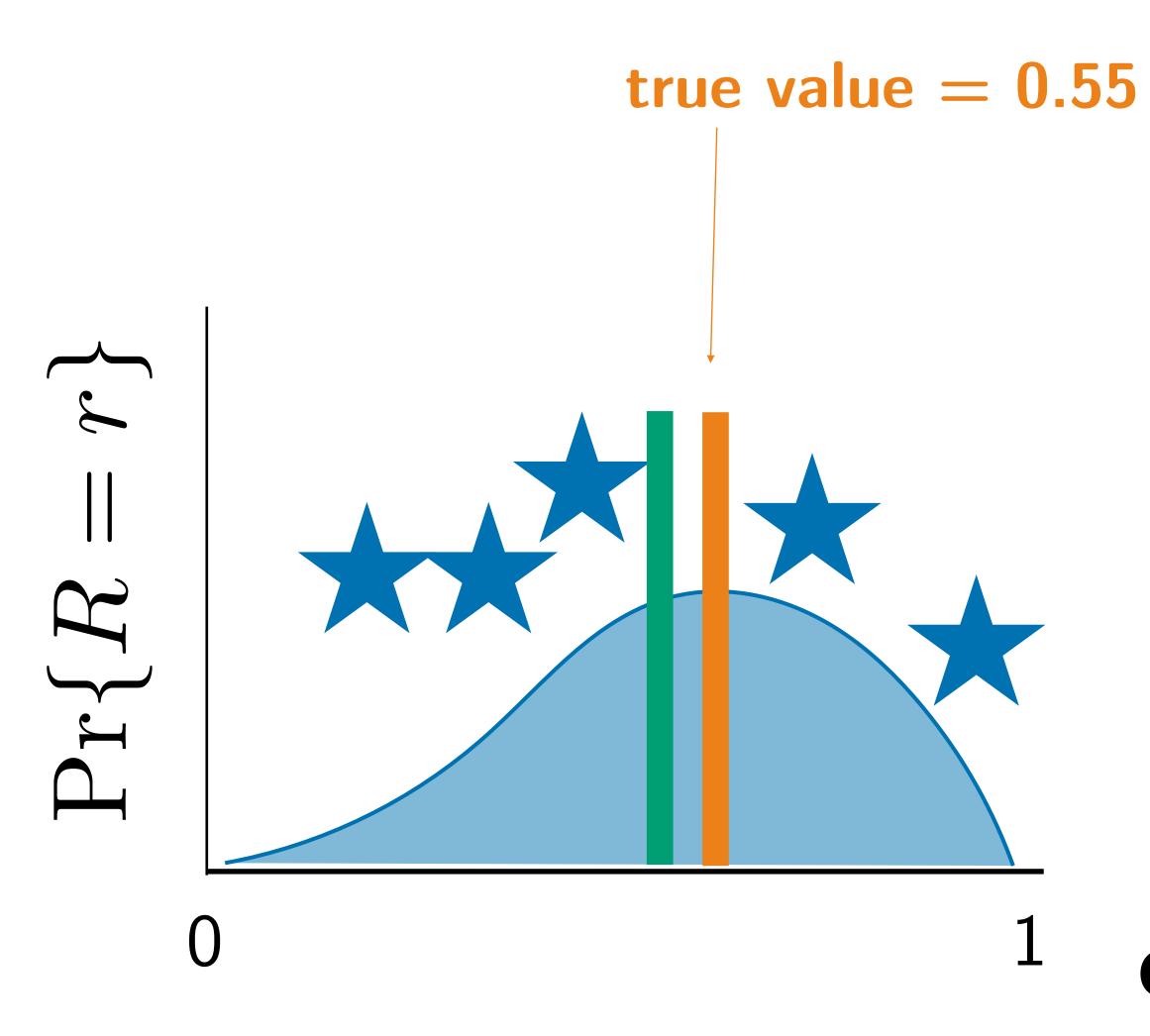
Optimism: Set \mathcal{Q}_1 to be high!

See RL book: Section 2.6

Algorithm 2: Upper Confidence Bound (UCB)



Algorithm 2: Upper Confidence Bound (UCB)



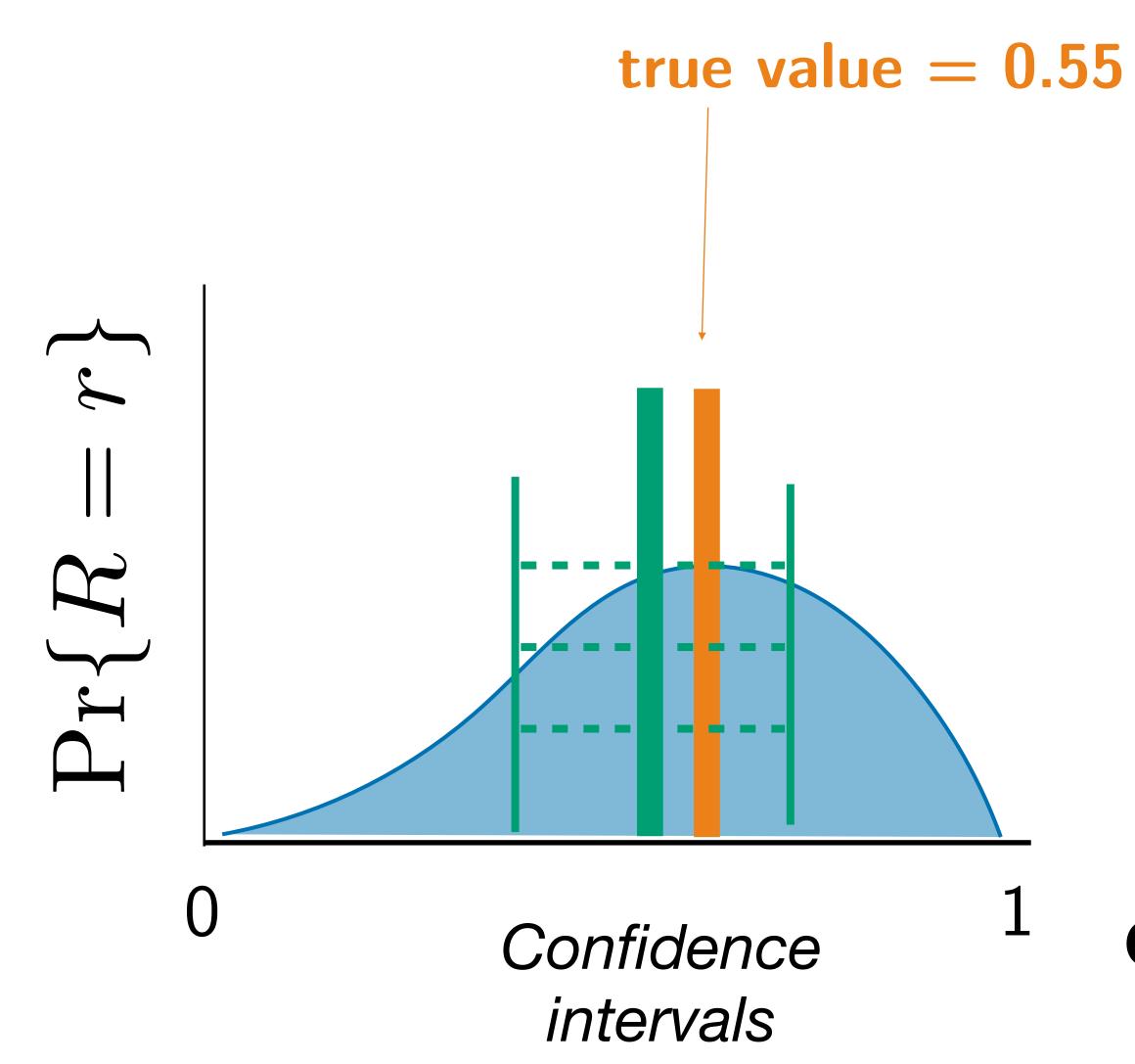
Samples after five rounds:

0.2, 0.4, 0.45, 0.6, 0.9

-> Sample average = 0.51

Q: How much more optimistic should we be?

Confidence Intervals



Samples after five rounds:

0.2, 0.4, 0.45, 0.6, 0.9

$$+ c \sqrt{\frac{\log t}{N_t(a)}}$$

Q: How much more optimistic should we be?

Algorithm 2: Upper Confidence Bound (UCB)

Algorithm: UCB

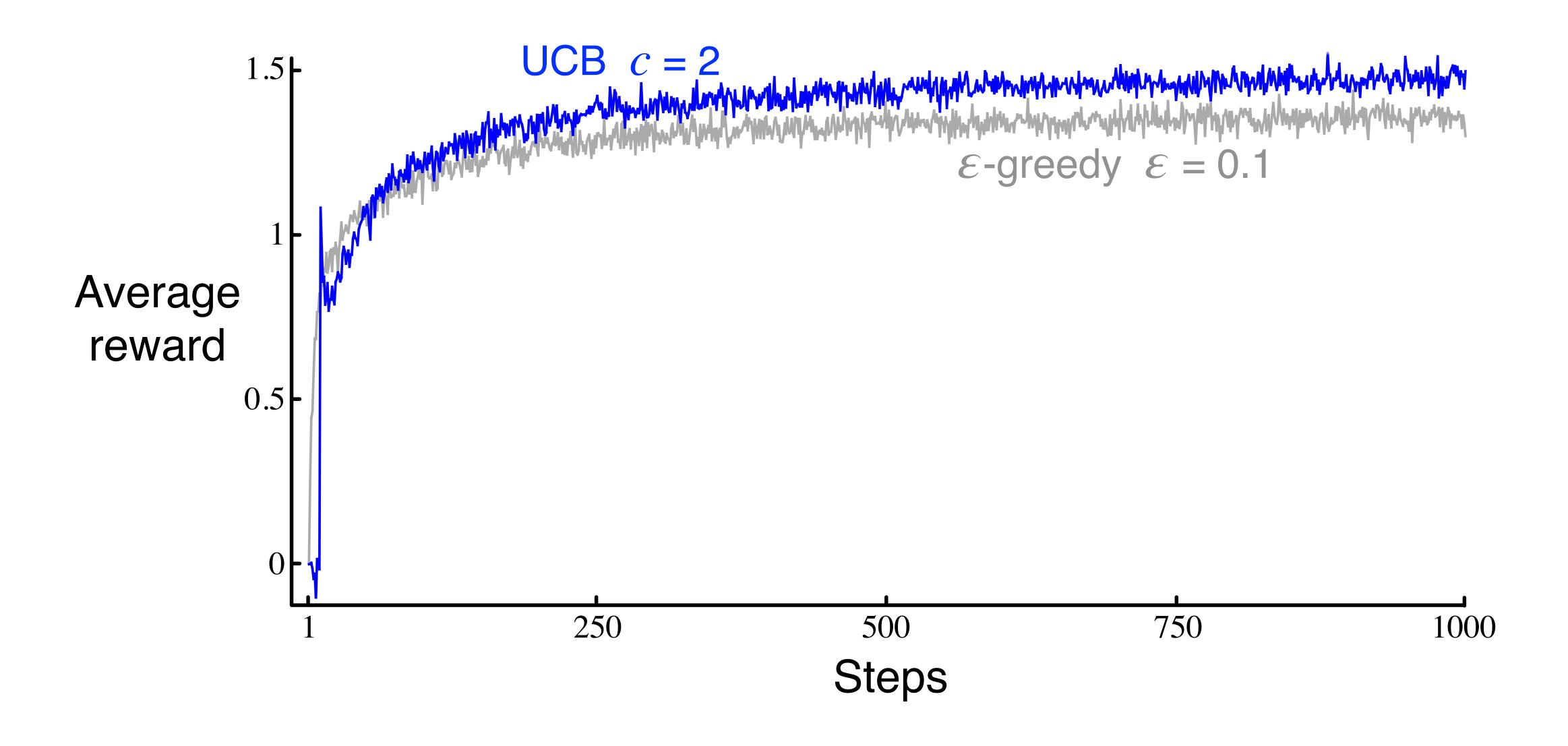
0
$$Q_1(a), N_1(a) = 0, \forall a \in \mathcal{A}$$

1 For each round t in T:

$$A_{t} = \begin{cases} \operatorname{Unif}(\mathcal{A}) & \max_{a} N_{t}(a) = 0 \\ \operatorname{arg\,max}_{a}[Q_{t}(a) + c\sqrt{\frac{\log t}{N_{t}(a)}}] & otherwise \end{cases}$$

- Execute A_t , observe R_t
- Update $N_t(a)$, $Q_t(a)$

Experiments: UCB vs. E - greedy Action Selection



Gradient-Based Algorithms

We will return to this!

RL Book: Section 2.8

Recap

- Simplest RL problem: Multi-armed bandit (MAB)
- MAB: k actions, no state. Goal: maximise long term reward
- Dilemma: balance exploration and exploitation
- Two basic algorithms: greedy and UCB

Reading

- RL Book, Chapter 2 (2.1-2.8)

Box "The Bandit Gradient Algorithm as Stochastic Gradient Ascent" in Sec 2.8 not examined

Optional

- UCB paper: P. Auer, N. Cesa-Bianchi, P. Fischer (2002). Finite-time analysis of the multi-armed bandit problem. Machine Learning, 47(2-3), 235-256.
- Book: Bandit Algorithms by Tor Lattimore and Csaba Szepesvári. Free download: https://tor-lattimore.com/downloads/book/book.pdf 28