Reinforcement Learning

Markov Decision Processes

David Abel, Michael Herrmann
Based heavily on slides by Stefano V. Albrecht

21 January 2025

Lecture Outline

e Revisit two questions from last time
e Central formalism: Markov decision processes (MDPs)

e Main quantities, functions: Policies, returns, value functions, Bellman equation.

Revisit Two Questions

e Q1: Which actions in UCB are explore actions? Which exploit?

e Q2: What is going on with the spike in Fig. 2.37

Q1: Which actions in UCB are explore actions? Which exploit?

A: Actions can be a mix. Or, either extreme.

Explore-exploit is about competing pressures: get reward and learn about the world.

Q1: Which actions in UCB are explore actions? Which exploit?

. J

Analogue: Given an empty canvas and a paint brush, paint the canvas 50% orange and
50% blue.

Q1: Which actions in UCB are explore actions? Which exploit?

. J

. = Exploit
. = Explore

Analogue: Given an empty canvas and a paint brush, paint the canvas 50% orange and

50% blue.

Q1: Which actions in UCB are explore actions? Which exploit?

. = Exploit
. = Explore

ar az

Analogue: Given an empty canvas and a paint brush, paint the canvas 50% orange and
50% blue.

Q1: Which actions in UCB are explore actions? Which exploit?

— Exploit: Pick best option so far

Ay = A} = argmax Q¢(a)

a
Greedy action selection

— Explore: Learn more about other options —

Random action selection

Some algorithms explicitly divide actions in this way

Q1: Which actions in UCB are explore actions? Which exploit?

Algorithm: UCB

(@]

Q1(a),Ni(a) =0,YVa € A
1 For each round tin T:

{Unif(A) max, Ny(a) =0
At =

arg max, [Qt (a) t+c]i;:%at)]

N

otherwise

3 Execute A;, observe R;

4 Update Ny(a), Qi(a)

Other algorithms choose actions that balance exploration and exploitation.

Q2: What is going on with the spike in Fig. 2.37

100% -
Optimistic, greedy
Q1=5, e=0

80% —

Realistic, € -greedy

% 60% —
. Q1=0, e=0.1
Optimal .
action 40% A

20% —

0%

1 200 400 600 800 1000
Steps

Q2: What is going on with the spike in Fig. 2.37

I
wn

% Optimal Action
o o
N w

e
H

o
o

1T —=— Q1=5,e=0,det

e
'S

—e— Q;=5,£=0,rand

—— 0;=0,6=0.1

0 40 80 120 160 200 240 280
Step Number

(a) First 300 Steps

% Optimal Action

o
wn

o
IS

o
w

o
N

o
=

o
o

—e— Q;=5,¢=0,rand
—=— Q1=5,e=0,det
—— 0:1=0,e=0.1

0 150 300 450 600 750 900
Step Number

(b) Full 1000 Steps

Re-implemented: Blue breaks ties randomly, orange does not.

10

Q2: What is going on with the spike in

—e— Q;=5,£=0,rand
051 —=— Q;=5,£=0,det
—— 0:=0,6=0.1
.S 0.41
= .
< Blue (no spike)
w 0.31 i .break ties randomly:
£ best_action = random. (best_actions) / Orange (spike)
g. 0.24 l‘:est_actlon best_actions[0]
N
0.11
0.01

0 40 80 120 160 200 240 280
Step Number
(b) The difference in code: blue randomly

(a) First 300 Steps breaks ties, orange does not.

11

Lecture Outline

o Revisi ons £ .

e Central formalism: Markov decision processes (MDPs)

e Main quantities, functions: Policies, returns, value functions, Bellman equation.

12

Bandits: The Simplest RL Problem

>| Agent Il

reward action
R, A,

i Rt+1
‘ ‘ Environment]4—

13

Bringing State Back: The Agent-Environment Interface

state

reward
R,

. Rl+l

'J Agent ||

7

) ST+1
<

\

Environment]47

action
A,

14

The Agent-Environment Interface

:| Agent Il
state reward action

St Rt At

- Rt+] (

< Environment]47
G

Agent and environment interact at discrete time steps: t =0,1,2, 3, ...

e Agent observes environment state at time t: S; € S
e and selects an action at step t: A; € A
e Environment sends back reward R;y; € R and new state S;y1 € S

15

The Agent-Environment Interface

'_| Agent |

state reward

Rt+1

)

'

A

St+l

\

Environment]47

action
A,

.. 9 Rt+1 Rt+2 Rt+3 e .
At At+1 At+2 At+3

15

Markov Decision Process

Markov decision process (MDP) consists of:

e State space S

e Action space A ’ MDP is finite if S, A, R are finite‘
Reward space R

Environment dynamics:

p(s',r|s,a) = Pr{StH =5 Ry =r|Si=sA4= a}

p(s'|s,a) = Pr{SHl =58 =s5A = a} = Zp(s',ﬂs,a)

reR
r(s,a) = E[Riy1 | St =5, A =a] = Zr Zp(sl,r|s,a)
rcR s'eS

17

Markov Property

Markov property:
Future state and reward are independent of past states and actions, given the current
state and action:

Pr{Sit1, Res1 | St A, Si—1, As—1,...,580, Ao} = Pr{Sip1, Riy1 | Si, A}

e State S, is sufficient summary of interaction history

= Means optimal decision in S; does not depend on past decisions

e Designing compact Markov states is “engineering work™ in RL

18

Example: Recycling Robot

Mobile robot must collect cans in office

States:
—high battery level

— low battery level

Actions:

— search for can
— wait for someone to bring can
— recharge battery at charging station

Rewards: number of cans collected

19

Example: Recycling Robot

S a s’ p(s'|s,a) r(s,a,s’)
high search high Q Tsearch
high search low 1l -« T'search
low search high | 1 -7 -3

low search low B T'search
high wait high | 1 Twait
high wait low 0 -

low wait high 0 -

low wait low 1 Twait
low recharge high 1 0

low recharge low 0 -

20

Example: Recycling Robot

-, -3

1 , Twait

B y T'search

recharge

1’ Twait
A, Tsearch I-a, T'search

21

MDP is controlled with a policy:

See Tutorial 2 & ¢

m(als) = probability of selecting action a when in state s

m(als) search wait recharge
high 09 0.1 0
low 0.2 0.3 0.5

Special case: deterministic policy 7(s) = a

m(s)

high — search

low — recharge

Remark: MDP coupled with fixed
policy 7 is a “Markov chain”

22

Goals and Rewards

Agent’s goal is to learn a policy that maximises cumulative reward

Reward hypothesis:
All goals can be described by the maximisation of the expected value of cumulative
scalar rewards.

23

Total Return

Formally, policy should maximise expected return:
Gt = Riy1 + Riyo + Rz + ... + Ry
=Riy1 + G
where T is final time step

Assumes terminating episodes:

e e.g. Chess game: terminates when one player wins
e e.g. Furniture building: terminates when furniture completed

e Can enforce termination by setting number of allowed time steps

24

Discounted Return

For non-terminating (infinite) episodes, can use discount rate v € [0,1):

o
Gt = Ryt + YRipo + VP Rigs + .. = Z"Vth+l+k
k=0

= Ri11 + G low ~ is shortsighted
o s high ~ is farsighted

e e.g. One cookie now, or many later?

e e.g. Financial portfolio management

25

Discounted Return

For non-terminating (infinite) episodes, can use discount rate v € [0,1):

o
Gt = Ryt + YRipo + 7V Regs + ... = Z'}’th+1+k
= Ri11 + G low v is shortsighted
high ~ is farsighted

e Sum is finite for v < 1 and bounded rewards R; < ryax :

o0

Z’YthJrlJrk < TmaXny = rmax%

k=0 Y

25

Discounted Return

For non-terminating (infinite) episodes, can use discount rate v € [0,1):

o
Gt = Ryt + YRipo + 7V Regs + ... = Z'}’th+1+k
k=0
= Ri11 + G low ~y is shortsighted

high ~ is farsighted

e Sum is finite for v < 1 and bounded rewards R; < ryax :

00 00 1
Z PYthJrlJrk < Tmax Z ’Yk = Tmax 7

1=~
k=0 k=0

e Definition also works for terminating episodes if terminal states are “absorbing”:

absorbing state always transitions into itself and gives reward 0

25

Note: This is as far as we got in class on 21 Jan, we will pick up from here next lecture.

26

State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

Markov: past states/actions don't
vr(8) = Ex[Gt|St = 5] matter given current state

27

State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

Markov: past states/actions don't
vr(8) = Ex[Gt|St = 5] matter given current state

=Ex[Riy1 +7Gi41|St = 8]

27

State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

Markov: past states/actions don't
vr(8) = Ex[Gt|St = 5] matter given current state

=Ex[Riy1 +7Gi41|St = 8]

— Zw(a\s) Zp(s',r\a, s) [r 4+ VEx [Gri1|Se1 = 5']]

a s'r

27

State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

Markov: past states/actions don't
vr(8) = Ex[Gt|St = 5] matter given current state

=Ex[Riy1 +7Gi41|St = 8]

— Zw(a\s) Zp(s',r\a, s) [r 4+ VEx [Gri1|Se1 = 5']]

s'r

— Z 7(als) Zp(s’, r|s,a) [7“ + ’Y/U’R'(S/)]

27

State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

Markov: past states/actions don't
vr(8) = Ex[Gt|St = 5] matter given current state

=Ex[Riy1 +7Gi41|St = 8]

3

- Zﬂ(a\s) Zp(s',r\a, s) [r +~E, [Gt+1\St+1 = S/H
a s'r a

_ Zﬂ(a|s)2p(sl,r|sja) [r + yvr(s')] A A AT
a s'r '

OO OO OO0Os

One-step look-ahead tree .

Action Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with

Bellman equation:

’Uﬂ-(S) = Eﬂ-[Gt|5t = S}

- Zw(a\s) Zp(s’, rls,a) [r + yvg(s)]

a s'r

28

Action Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with

Bellman equation:

’Uﬂ-(S) = Eﬂ-[Gt|5t = S}

- Zw(a\s) Zp(s’, rls,a) [r + yvg(s)]

Can also define action-value function:
. T
qr(s,a) = Ex[Gi|S; = s, Ay = a A p
S

— Zp(sl, rls,a) [r+yvr(s)]

Recap: Value and Action-Value Functions

value function:

'U7r(5) - Z 7T<a | S)T(Sva) +7 Z p('sl | S7a)) UW(S/)

acA s’eS

29

Recap: Value and Action-Value Functions

value function:

Ur(s) = Z m(a | s)r(s,a)+py Z p(sl | s,a)| UW(SI)

acA s'eS

Immediate reward discounted expected future value

30

Recap: Value and Action-Value Functions

value function:

vn(s) = S m(al)r(s,a)+7 3 pls' | 5,0) - vel(s)

acA s'eS

action value function:

qr(s,a) =r(s,a) +7 Z p(s' | s,a) - v(s")
s'eS

31

Recap: Value and Action-Value Functions

value function:

va(s) =Y _mlals)r(s,a) +v Y p(s' | s,a) - vn(s))

acA s'eS

action value function:

q=(s,a) :E"(s, a)}i—

Immediate reward discounted expected future value

s’'eS

S p(s' | 5,a) vw<s’>]

32

Optimal Value Functions and Policies

Policy 7 is optimal if
vr(8) = v4(s) = max v (s)
7['/

Gr(s,0) = (s, a) = maxqw (s, a)

Because of the Bellman equation, this means that for any optimal policy 7

Vi Vst vr(s) > va(s)

33

Optimal Value Functions and Policies

We can write optimal value function without reference to policy:

vi(8) = mngp(s', r|s,a) [r + 'yv*(sl)}

s'r

Bellman optimality
equations

0o(5.0) = Y2 p(ssrls.0) [+ (5,)|
a/

s'r

(vs) : () “x'

o
o
o
o
Q
[
®
[
;

34

Discussion: Relating v, and ¢,

Discussion (2 minutes): Suppose all rewards are non-negative.

Q: What can be said about the value, v;(s) of a policy m when v = 0.5 vs. v = 0.97

Q: When are they equal, if ever?

35

Example: Gridworld

Gridworld:
e States: cell location in grid
e Actions: move north, south, east, west

e Rewards: -1 if off-grid, +10/+5 if in A/B, 0 otherwise

Ad By 3.3/8.8) 4.4(\5.3)1.5

v, '/
5 State-value function v, (s)

1.5(3.0{2.3/1.9/0.5)
0 B'j ‘ o1lo7 0.7_0-4 for policy 7(als) = 7 for all

s,a, with v =0.9
-1.0/-0.4{-0.4{-0.6/-1.2

Actions
AKX -1.9(1.3-1.2-1.4-2.0

36

Example: Gridworld

Gridworld:

e States: cell location in grid

e Actions: move north, south, east, west

e Rewards: -1 if off-grid, +10/+5 if in A/B, 0 otherwise

Al |B\ 22.024.4(22.0[19.417.5 — e e]|
+5 19.8(22.0{19.8/17.8/16.0 [N g P R

40| | B! 17.8/19.8/17.8/16.0 14.4 L P A
16.0{17.8/16.0/14.4/13.0 LR O A O

A"f 14.4/16.0{14.4/13.0{11.7 L O O

Optimal policy and
state-value function

36

Solving the Bellman Equation

Bellman equation for v, forms a system of n linear equations with n variables, where n is
number of states (for finite MDP):

val(s) = Y m(als1) Y p(s'rlsi,a) [r+qvn(s)]
¢ il v (s) are variables
vn(s2) = ZW(‘”SQ) ZP(SI’MSQ’ a) [r +yvr(s)] m(als), p(s',7r|s,a), r,

and ~ are constants

v (8p) = Z 7(alsy) Zp(s/, r|sn, a) [+ yvx(s')]

e Value function v, is unique solution to system

e Solve for v; with any method to solve linear systems (e.g. Gauss elimination)
37

Solving the Bellman Optimality Equation

Bellman optimality equation for v, forms a system of n non-linear equations with n
variables

e Equations are non-linear due to max operator
e Optimal value function v, is unique solution to system

e Solve for v, with any method to solve non-linear equation systems
Can solve related set of equations for ¢ / g

Once we have v, or q., we know optimal policy 7, (why?)

38

Recap: The Main ldeas

Markov decision process is the canonical way to model RL problems:

(S, A, r,p,7). (1)

Policy is the agent's strategy for assigning actions to states: 7 : S — A (can be
stochastic, too).

Goal is to find a policy that maximizes expected cumulative reward.

e Value: vr(s), Action-value: ¢r(s,a): capture expected cumulative discounted reward.
qr($, p p

39

RL vs. Planning

e RL problem: efficiently learn a high-value policy by interacting with an MDP.

e Planning problem: given an MDP (we know all of its components), compute the

optimal policy.

40

Required:
e RL book, Chapter 3 (3.1-3.7)

Optional:
e Dynamic Programming
by Richard Bellman (university library has copies)

e Markov Decision Processes: Discrete Stochastic Dynamic Programming
by Martin Puterman (university library has copies)

e Tsitsiklis, J., Van Roy, B. (2002). On Average Versus Discounted Reward
Temporal-Difference Learning. Machine Learning, 49, 179-191

41

[Extra/not examined] Ergodicity and Average Reward

For finite MDP and non-terminating episode, any policy 7 will produce an ergodic set of
states S:

e Every state in S visited infinitely often

e Steady-state distribution: Pr(s) = limy_,oo Pr{S; = s | Ag,..., Ay—1 ~ 7}

Performance of m can be measured by average reward:
h

o1
r(m) = hh_)rgo 7 ;E[Rt | So, Aoy vy Ap—1 ~ 7]

Independent of

. /
= ES Pr(s) Za: m(als) ZP(S s, a)r initial state Sy!
s'.r

42

[Extra/not examined] Discounting and Average Reward

Maximising discounted return over steady-state dist. is same as maximising average

32 Pl) = 5 Pr(e) S nlals) D pls s rlss)l -+ 70

reward!

+ZP Z (als) Y p(s',rls, @) [yve(s)]
77)+72P7r(5/)v

=r(m) +7[r(m) +7 > Pe(s)v

= 7(m) +yr(m) + () + () + -

= has no effect on maximisation!

43

[Extra/not examined] Discounting and Average Reward

We will focus on discounted return since:

e Most of current RL theory was developed for discounted return

e Discounted and average setting give same limit results for v — 1

= This is why most often people use v € [0.95,0.99]

e Discounted return works well for finite and infinite episodes

44

