Reinforcement Learning

Markov Decision Processes

David Abel, Michael Herrmann

Based heavily on slides by Stefano V. Albrecht

21 January 2025

Lecture Outline

- Revisit two questions from last time
- Central formalism: Markov decision processes (MDPs)
- Main quantities, functions: Policies, returns, value functions, Bellman equation.

Revisit Two Questions

• Q1: Which actions in UCB are explore actions? Which exploit?

• Q2: What is going on with the spike in Fig. 2.3?

A: Actions can be a mix. Or, either extreme.

Explore-exploit is about competing pressures: get reward and learn about the world.

Analogue: Given an empty canvas and a paint brush, paint the canvas 50% orange and 50% blue.

Analogue: Given an empty canvas and a paint brush, paint the canvas 50% orange and 50% blue.

Analogue: Given an empty canvas and a paint brush, paint the canvas 50% orange and 50% blue.

Exploit: Pick best option so far

$$A_t = A_t^* = rgmax Q_t(a)$$
Greedy action selection

Explore: Learn more about other options —

$$A_t \sim \mathrm{Unif}(\mathcal{A})$$

Random action selection

Some algorithms explicitly divide actions in this way

Algorithm: UCB

$$0 Q_1(a), N_1(a) = 0, \forall a \in \mathcal{A}$$

1 For each round t in T:

2
$$A_t = \begin{cases} \operatorname{Unif}(\mathcal{A}) & \max_a N_t(a) = 0\\ \arg \max_a [Q_t(a) + c\sqrt{\frac{\log t}{N_t(a)}}] & otherwise \end{cases}$$

- 3 Execute A_t , observe R_t
- 4 Update $N_t(a)$, $Q_t(a)$

Other algorithms choose actions that balance exploration and exploitation.

Q2: What is going on with the spike in Fig. 2.3?

Q2: What is going on with the spike in Fig. 2.3?

Re-implemented: Blue breaks ties randomly, orange does not.

Q2: What is going on with the spike in Fig. 2.3?

(a) First 300 Steps

(b) The difference in code: blue randomly breaks ties, orange does not.

Lecture Outline

- Revisit two questions from last time
- Central formalism: Markov decision processes (MDPs)
- Main quantities, functions: Policies, returns, value functions, Bellman equation.

Bandits: The Simplest RL Problem

Bringing State Back: The Agent-Environment Interface

The Agent-Environment Interface

Agent and environment interact at discrete time steps: t = 0, 1, 2, 3, ...

- ullet Agent observes environment state at time $t{:}\ S_t \in \mathcal{S}$
- and selects an action at step t: $A_t \in \mathcal{A}$
- Environment sends back reward $R_{t+1} \in \mathcal{R}$ and new state $S_{t+1} \in \mathcal{S}$

The Agent-Environment Interface

Live Demo

Markov Decision Process

Markov decision process (MDP) consists of:

- ullet State space ${\cal S}$
- Action space ${\cal A}$

MDP is *finite* if S, A, R are finite

- ullet Reward space ${\mathcal R}$
- Environment dynamics:

$$p(s', r|s, a) = \Pr\{S_{t+1} = s', R_{t+1} = r \mid S_t = s, A_t = a\}$$

$$p(s'|s, a) = \Pr\{S_{t+1} = s' \mid S_t = s, A_t = a\} = \sum_{r \in \mathcal{R}} p(s', r|s, a)$$

$$r(s, a) = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r|s, a)$$

Markov Property

Markov property:

Future state and reward are independent of past states and actions, *given the current* state and action:

$$\Pr\{S_{t+1}, R_{t+1} \mid S_t, A_t, S_{t-1}, A_{t-1}, ..., S_0, A_0\} = \Pr\{S_{t+1}, R_{t+1} \mid S_t, A_t\}$$

- ullet State S_t is sufficient summary of interaction history
 - \Rightarrow Means optimal decision in S_t does not depend on past decisions
- Designing compact Markov states is "engineering work" in RL

Example: Recycling Robot

- Mobile robot must collect cans in office
- States:
 - high battery level
 - low battery level
- Actions:
 - search for can
 - wait for someone to bring can
 - recharge battery at charging station
- Rewards: number of cans collected

Example: Recycling Robot

$\underline{\hspace{1cm}}$	a	s'	p(s' s,a)	r(s, a, s')
high	search	high	α	$r_{ t search}$
${ t high}$	${ t search}$	low	$1-\alpha$	$r_{ t search}$
low	${ t search}$	high	$1-\beta$	-3
low	${ t search}$	low	β	$r_{ t search}$
high	wait	high	1	$r_{\mathtt{Wait}}$
high	wait	low	0	-
low	wait	high	0	-
low	wait	low	1	$r_{\mathtt{Wait}}$
low	recharge	high	1	0
low	recharge	low	0	-

Example: Recycling Robot

Policy

See Tutorial 2 & 4

MDP is controlled with a policy:

$$\pi(a|s) = \text{probability of selecting action } a \text{ when in state } s$$

$\pi(a s)$	search	wait	recharge
high	0.9	0.1	0
low	0.2	0.3	0.5

Special case: deterministic policy $\pi(s) = a$

$$\frac{\pi(s)}{\text{high} \rightarrow \text{search}}$$

$$\text{low} \rightarrow \text{recharge}$$

Remark: MDP coupled with fixed policy π is a "Markov chain"

Goals and Rewards

Agent's goal is to learn a policy that maximises cumulative reward

Reward hypothesis:

All goals can be described by the maximisation of the expected value of cumulative scalar rewards.

Total Return

Formally, policy should maximise expected return:

$$G_t \doteq R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$
$$= R_{t+1} + G_{t+1}$$

where T is final time step

Assumes terminating episodes:

- e.g. Chess game: terminates when one player wins
- e.g. Furniture building: terminates when furniture completed
- Can enforce termination by setting number of allowed time steps

Discounted Return

For non-terminating (infinite) episodes, can use discount rate $\gamma \in [0,1)$:

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+1+k}$$
$$= R_{t+1} + \gamma G_{t+1}$$

low γ is shortsighted high γ is farsighted

- e.g. One cookie now, or many later?
- e.g. Financial portfolio management

Discounted Return

For non-terminating (infinite) episodes, can use discount rate $\gamma \in [0,1)$:

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+1+k}$$
$$= R_{t+1} + \gamma G_{t+1}$$

low γ is shortsighted high γ is farsighted

• Sum is finite for $\gamma < 1$ and bounded rewards $R_t \leq r_{\max}$:

$$\sum_{k=0}^{\infty} \gamma^k R_{t+1+k} \leq r_{\max} \sum_{k=0}^{\infty} \gamma^k = r_{\max} \frac{1}{1-\gamma}$$

Discounted Return

For non-terminating (infinite) episodes, can use discount rate $\gamma \in [0,1)$:

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+1+k}$$
$$= R_{t+1} + \gamma G_{t+1}$$

low γ is shortsighted high γ is farsighted

• Sum is finite for $\gamma < 1$ and bounded rewards $R_t \leq r_{\max}$:

$$\sum_{k=0}^{\infty} \gamma^k R_{t+1+k} \leq r_{\max} \sum_{k=0}^{\infty} \gamma^k = r_{\max} \frac{1}{1-\gamma}$$

 Definition also works for terminating episodes if terminal states are "absorbing": absorbing state always transitions into itself and gives reward 0

Because of Markov property, can write state-value function in recursive form with Bellman equation:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t = s]$$

Markov: past states/actions don't matter given current state

Because of Markov property, can write state-value function in recursive form with Bellman equation:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_t = s]$$

Markov: past states/actions don't matter given current state

Because of Markov property, can write state-value function in recursive form with Bellman equation:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t}|S_{t}=s]$$
 Markov: past states/actions don't matter given current state
$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_{t}=s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|a,s) \left[r + \gamma \mathbb{E}_{\pi} \left[G_{t+1}|S_{t+1}=s'\right]\right]$$

Because of Markov property, can write state-value function in recursive form with Bellman equation:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_{t}|S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|a,s) \left[r + \gamma \mathbb{E}_{\pi}[G_{t+1}|S_{t+1} = s']\right]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

Because of Markov property, can write state-value function in recursive form with Bellman equation:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t = s]$$

Markov: past states/actions don't matter given current state

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|a,s) \left[r + \gamma \mathbb{E}_{\pi} \left[G_{t+1} | S_{t+1} = s' \right] \right]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s') \right]$$

Because of Markov property, can write state-value function in recursive form with Bellman equation:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

Action Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with Bellman equation:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]$$

Can also define action-value function:

$$q_{\pi}(s, a) \doteq \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$
$$= \sum_{s', r} p(s', r | s, a) \left[r + \gamma v_{\pi}(s') \right]$$

value function:

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) \cdot v_{\pi}(s')$$

value function:

value function:

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) \cdot v_{\pi}(s')$$

action value function:

$$q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) \cdot v_{\pi}(s')$$

value function:

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) \cdot v_{\pi}(s')$$

action value function:

$$q_{\pi}(s,a) = r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s,a) \cdot v_{\pi}(s')$$

$$| \text{Immediate reward discounted expected future value}$$

Optimal Value Functions and Policies

Policy π is optimal if

$$v_{\pi}(s) = v_{*}(s) = \max_{\pi'} v_{\pi'}(s)$$
$$q_{\pi}(s, a) = q_{*}(s, a) = \max_{\pi'} q_{\pi'}(s, a)$$

Because of the Bellman equation, this means that for any optimal policy π :

$$\forall \hat{\pi} \ \forall s : v_{\pi}(s) \ge v_{\hat{\pi}}(s)$$

Optimal Value Functions and Policies

We can write optimal value function without reference to policy:

$$v_*(s) = \max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_*(s') \right]$$
$$q_*(s,a) = \sum_{a'} p(s',r|s,a) \left[r + \gamma \max_{a'} q_*(s',a') \right]$$

Bellman optimality equations

Discussion: Relating v_{π} and q_{π}

Discussion (2 minutes): Suppose all rewards are non-negative.

Q: What can be said about the value, $v_{\pi}(s)$ of a policy π when $\gamma=0.5$ vs. $\gamma=0.9$?

Q: When are they equal, if ever?

Example: Gridworld

Gridworld:

- States: cell location in grid
- Actions: move north, south, east, west
- Rewards: -1 if off-grid, +10/+5 if in A/B, 0 otherwise

_					
	3.3	8.8	4.4	5.3	1.5
	1.5	3.0	2.3	1.9	0.5
Ī	0.1	0.7	0.7	0.4	-0.4
-	-1.0	-0.4	-0.4	-0.6	-1.2
Ŀ	-1.9	1.3	-1.2	-1.4	-2.0

State-value function $v_\pi(s)$ for policy $\pi(a|s)=\frac{1}{4}$ for all s,a, with $\gamma=0.9$

Example: Gridworld

Gridworld:

- States: cell location in grid
- Actions: move north, south, east, west
- Rewards: -1 if off-grid, +10/+5 if in A/B, 0 otherwise

22.0	24.4	22.0	19.4	17.5
19.8	22.0	19.8	17.8	16.0
17.8	19.8	17.8	16.0	14.4
16.0	17.8	16.0	14.4	13.0
14.4	16.0	14.4	13.0	11.7

Optimal policy and state-value function

Solving the Bellman Equation

Bellman equation for v_{π} forms a system of n linear equations with n variables, where n is number of states (for finite MDP):

$$v_{\pi}(s_1) = \sum_{a} \pi(a|s_1) \sum_{s',r} p(s',r|s_1,a) \left[r + \gamma v_{\pi}(s') \right]$$
$$v_{\pi}(s_2) = \sum_{a} \pi(a|s_2) \sum_{s',r} p(s',r|s_2,a) \left[r + \gamma v_{\pi}(s') \right]$$

 $v_{\pi}(s)$ are variables $\pi(a|s)\text{, }p(s',r|s,a)\text{, }r\text{,}$ and γ are constants

- $v_{\pi}(s_n) = \sum_{a} \pi(a|s_n) \sum_{s',r} p(s',r|s_n,a) [r + \gamma v_{\pi}(s')]$
- Value function v_{π} is unique solution to system
- ullet Solve for v_π with any method to solve linear systems (e.g. Gauss elimination)

Solving the Bellman Optimality Equation

Bellman optimality equation for v_* forms a system of n non-linear equations with n variables

- Equations are non-linear due to max operator
- ullet Optimal value function v_* is unique solution to system
- ullet Solve for v_* with any method to solve non-linear equation systems

Can solve related set of equations for q_π / q_*

Once we have v_* or q_* , we know optimal policy π_* (why?)

Recap: The Main Ideas

• Markov decision process is the canonical way to model RL problems:

$$(\mathcal{S}, \mathcal{A}, r, p, \gamma). \tag{1}$$

- Policy is the agent's strategy for assigning actions to states: $\pi: \mathcal{S} \to \mathcal{A}$ (can be stochastic, too).
- Goal is to find a policy that maximizes expected cumulative reward.
- Value: $v_{\pi}(s)$, Action-value: $q_{\pi}(s,a)$: capture expected cumulative discounted reward.

RL vs. Planning

- RL problem: efficiently learn a high-value policy by interacting with an MDP.
- Planning problem: given an MDP (we know all of its components), compute the optimal policy.

Reading

Required:

• RL book, Chapter 3 (3.1–3.7)

Optional:

- Dynamic Programming by Richard Bellman (university library has copies)
- Markov Decision Processes: Discrete Stochastic Dynamic Programming by Martin Puterman (university library has copies)
- Tsitsiklis, J., Van Roy, B. (2002). On Average Versus Discounted Reward Temporal-Difference Learning. Machine Learning, 49, 179–191

[Extra/not examined] Ergodicity and Average Reward

For finite MDP and non-terminating episode, any policy π will produce an ergodic set of states \hat{S} :

- ullet Every state in $\hat{\mathcal{S}}$ visited infinitely often
- Steady-state distribution: $P_{\pi}(s) = \lim_{t \to \infty} \Pr\{S_t = s \mid A_0, ..., A_{t-1} \sim \pi\}$

Performance of π can be measured by average reward:

$$r(\pi) \doteq \lim_{h \to \infty} \frac{1}{h} \sum_{t=1}^{h} \mathbb{E}[R_t \mid S_0, A_0, ..., A_{t-1} \sim \pi]$$

$$= \sum_{s} P_{\pi}(s) \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) r \qquad \qquad \text{Independent of initial state } S_0!$$

[Extra/not examined] Discounting and Average Reward

Maximising discounted return over steady-state dist. is same as maximising average reward!

$$\begin{split} \sum_{s} P_{\pi}(s) \, v_{\pi}(s) &= \sum_{s} P_{\pi}(s) \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')] \\ &= r(\pi) + \sum_{s} P_{\pi}(s) \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [\gamma v_{\pi}(s')] \\ &= r(\pi) + \gamma \sum_{s'} P_{\pi}(s') \, v_{\pi}(s') \\ &= r(\pi) + \gamma \left[r(\pi) + \gamma \sum_{s'} P_{\pi}(s') \, v_{\pi}(s') \right] \\ &= r(\pi) + \gamma r(\pi) + \gamma^2 r(\pi) + \gamma^3 r(\pi) + \cdots \\ &= r(\pi) \frac{1}{1 - \gamma} \qquad \Rightarrow \gamma \text{ has no effect on maximisation!} \end{split}$$

[Extra/not examined] Discounting and Average Reward

We will focus on discounted return since:

- Most of current RL theory was developed for discounted return
- Discounted and average setting give same limit results for $\gamma \to 1$ \Rightarrow This is why most often people use $\gamma \in [0.95, 0.99]$
- Discounted return works well for finite and infinite episodes