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Lecture Outline

e Revisit two questions from last time
e Central formalism: Markov decision processes (MDPs)

e Main quantities, functions: Policies, returns, value functions, Bellman equation.



Revisit Two Questions

e Q1: Which actions in UCB are explore actions? Which exploit?

e Q2: What is going on with the spike in Fig. 2.37



Q1: Which actions in UCB are explore actions? Which exploit?

A: Actions can be a mix. Or, either extreme.

Explore-exploit is about competing pressures: get reward and learn about the world.
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Q1: Which actions in UCB are explore actions? Which exploit?

— Exploit: Pick best option so far

Ay = A} = argmax Q¢(a)

a
Greedy action selection

— Explore: Learn more about other options —

Random action selection

Some algorithms explicitly divide actions in this way



Q1: Which actions in UCB are explore actions? Which exploit?

Algorithm: UCB

(@]

Q1(a),Ni(a) =0,YVa € A
1 For each round tin T:

{Unif(A) max, Ny(a) =0
At =

arg max, [Qt (a) t+c ]i;:%at) ]

N

otherwise

3 Execute A;, observe R;

4 Update Ny(a), Qi(a)

Other algorithms choose actions that balance exploration and exploitation.



Q2: What is going on with the spike in Fig. 2.37
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Q2: What is going on with the spike in Fig. 2.37
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Re-implemented: Blue breaks ties randomly, orange does not.
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Q2: What is going on with the spike in
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Lecture Outline

o Revisi ons £ .

e Central formalism: Markov decision processes (MDPs)

e Main quantities, functions: Policies, returns, value functions, Bellman equation.
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Bandits: The Simplest RL Problem
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Bringing State Back: The Agent-Environment Interface
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The Agent-Environment Interface

:| Agent Il
state reward action

St Rt At

- Rt+] (

< Environment ]47
G

Agent and environment interact at discrete time steps: t =0,1,2, 3, ...

e Agent observes environment state at time t: S; € S
e and selects an action at step t: A; € A
e Environment sends back reward R;y; € R and new state S;y1 € S
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The Agent-Environment Interface
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Markov Decision Process

Markov decision process (MDP) consists of:

e State space S

e Action space A ’ MDP is finite if S, A, R are finite‘
Reward space R

Environment dynamics:

p(s',r|s,a) = Pr{StH =5 Ry =r|Si=sA4= a}

p(s'|s,a) = Pr{SHl =58 =s5A = a} = Zp(s',ﬂs,a)

reR
r(s,a) = E[Riy1 | St =5, A =a] = Zr Zp(sl,r|s,a)
rcR s'eS
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Markov Property

Markov property:
Future state and reward are independent of past states and actions, given the current
state and action:

Pr{Sit1, Res1 | St A, Si—1, As—1,...,580, Ao} = Pr{Sip1, Riy1 | Si, A}

e State S, is sufficient summary of interaction history

= Means optimal decision in S; does not depend on past decisions

e Designing compact Markov states is “engineering work™ in RL
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Example: Recycling Robot

Mobile robot must collect cans in office

States:
—high battery level

— low battery level

Actions:

— search for can
— wait for someone to bring can
— recharge battery at charging station

Rewards: number of cans collected

19



Example: Recycling Robot

S a s’ p(s'|s,a) r(s,a,s’)
high search high Q Tsearch
high search low 1l -« T'search
low search high | 1 -7 -3

low search low B T'search
high wait high | 1 Twait
high wait low 0 -

low wait high 0 -

low wait low 1 Twait
low recharge  high 1 0

low recharge  low 0 -
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Example: Recycling Robot

-, -3

1 , Twait

B y T'search

recharge

1’ Twait
A, Tsearch I-a, T'search
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MDP is controlled with a policy:

See Tutorial 2 & ¢

m(als) = probability of selecting action a when in state s

m(als) search wait recharge
high 09 0.1 0
low 0.2 0.3 0.5

Special case: deterministic policy 7(s) = a

m(s)

high — search

low — recharge

Remark: MDP coupled with fixed
policy 7 is a “Markov chain”
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Goals and Rewards

Agent’s goal is to learn a policy that maximises cumulative reward

Reward hypothesis:
All goals can be described by the maximisation of the expected value of cumulative
scalar rewards.
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Total Return

Formally, policy should maximise expected return:
Gt = Riy1 + Riyo + Rz + ... + Ry
=Riy1 + G
where T is final time step

Assumes terminating episodes:

e e.g. Chess game: terminates when one player wins
e e.g. Furniture building: terminates when furniture completed

e Can enforce termination by setting number of allowed time steps
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Discounted Return

For non-terminating (infinite) episodes, can use discount rate v € [0,1):

o
Gt = Ryt + YRipo + VP Rigs + .. = Z"Vth+l+k
k=0

= Ri11 + G low ~ is shortsighted
o s high ~ is farsighted

e e.g. One cookie now, or many later?

e e.g. Financial portfolio management
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Discounted Return

For non-terminating (infinite) episodes, can use discount rate v € [0,1):

o
Gt = Ryt + YRipo + 7V Regs + ... = Z'}’th+1+k
= Ri11 + G low v is shortsighted
high ~ is farsighted

e Sum is finite for v < 1 and bounded rewards R; < ryax :

o0

Z’YthJrlJrk < TmaXny = rmax%

k=0 Y
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Discounted Return

For non-terminating (infinite) episodes, can use discount rate v € [0,1):

o
Gt = Ryt + YRipo + 7V Regs + ... = Z'}’th+1+k
k=0
= Ri11 + G low ~y is shortsighted

high ~ is farsighted

e Sum is finite for v < 1 and bounded rewards R; < ryax :

00 00 1
Z PYthJrlJrk < Tmax Z ’Yk = Tmax 7

1=~
k=0 k=0

e Definition also works for terminating episodes if terminal states are “absorbing”:

absorbing state always transitions into itself and gives reward 0
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Note: This is as far as we got in class on 21 Jan, we will pick up from here next lecture.
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State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

Markov: past states/actions don't
vr(8) = Ex[Gt|St = 5] matter given current state
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State Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with
Bellman equation:

Markov: past states/actions don't
vr(8) = Ex[Gt|St = 5] matter given current state

=Ex[Riy1 +7Gi41|St = 8]

3

- Zﬂ(a\s) Zp(s',r\a, s) [r +~E, [Gt+1\St+1 = S/H
a s'r a

_ Zﬂ(a|s)2p(sl,r|sja) [r + yvr(s')] A A AT
a s'r '

OO OO OO0Os

One-step look-ahead tree .



Action Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with

Bellman equation:

’Uﬂ-(S) = Eﬂ-[Gt|5t = S}

- Zw(a\s) Zp(s’, rls,a) [r + yvg(s)]

a s'r
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Action Value Function and the Bellman equation

Because of Markov property, can write state-value function in recursive form with

Bellman equation:

’Uﬂ-(S) = Eﬂ-[Gt|5t = S}

- Zw(a\s) Zp(s’, rls,a) [r + yvg(s)]

Can also define action-value function:
. T
qr(s,a) = Ex[Gi|S; = s, Ay = a A p
S

— Zp(sl, rls,a) [r+yvr(s)]



Recap: Value and Action-Value Functions

value function:

'U7r(5) - Z 7T<a | S)T(Sva) +7 Z p('sl | S7a) ) UW(S/)

acA s’eS
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Recap: Value and Action-Value Functions

value function:

Ur(s) = Z m(a | s)r(s,a)+py Z p(sl | s,a)| UW(SI)

acA s'eS

Immediate reward discounted expected future value

30



Recap: Value and Action-Value Functions

value function:

vn(s) = S m(al )r(s,a)+7 3 pls' | 5,0) - vel(s)

acA s'eS

action value function:

qr(s,a) =r(s,a) +7 Z p(s' | s,a) - v(s")
s'eS

31



Recap: Value and Action-Value Functions

value function:

va(s) =Y _mlals)r(s,a) +v Y p(s' | s,a) - vn(s))

acA s'eS

action value function:

q=(s,a) :E"(s, a)}i—

Immediate reward discounted expected future value

s’'eS

S p(s' | 5,a) vw<s’>]
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Optimal Value Functions and Policies

Policy 7 is optimal if
vr(8) = v4(s) = max v (s)
7['/

Gr(s,0) = (s, a) = maxqw (s, a)

Because of the Bellman equation, this means that for any optimal policy 7

Vi Vst vr(s) > va(s)
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Optimal Value Functions and Policies

We can write optimal value function without reference to policy:

vi(8) = mngp(s', r|s,a) [r + 'yv*(sl)}

s'r

Bellman optimality
equations

0o(5.0) = Y2 p(ssrls.0) [+ (5, )|
a/

s'r

(vs) : () “x'

o
o
o
o
Q
[
®
[
;
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Discussion: Relating v, and ¢,

Discussion (2 minutes): Suppose all rewards are non-negative.

Q: What can be said about the value, v;(s) of a policy m when v = 0.5 vs. v = 0.97

Q: When are they equal, if ever?
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Example: Gridworld

Gridworld:
e States: cell location in grid
e Actions: move north, south, east, west

e Rewards: -1 if off-grid, +10/+5 if in A/B, 0 otherwise

Ad By 3.3/8.8) 4.4(\5.3)1.5

v, '/
5 State-value function v, (s)

1.5(3.0{2.3/1.9/0.5 )
0 B'j ‘ o1lo7 0.7_0-4 for policy 7(als) = 7 for all

s,a, with v =0.9
-1.0/-0.4{-0.4{-0.6/-1.2

Actions
AKX -1.9(1.3-1.2-1.4-2.0
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Example: Gridworld

Gridworld:

e States: cell location in grid

e Actions: move north, south, east, west

e Rewards: -1 if off-grid, +10/+5 if in A/B, 0 otherwise

Al |B\ 22.024.4(22.0[19.417.5 — e e ]|
+5 19.8(22.0{19.8/17.8/16.0 [N g P R

40| | B! 17.8/19.8/17.8/16.0 14.4 L P A
16.0{17.8/16.0/14.4/13.0 LR O A O

A"f 14.4/16.0{14.4/13.0{11.7 L O O

Optimal policy and
state-value function
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Solving the Bellman Equation

Bellman equation for v, forms a system of n linear equations with n variables, where n is
number of states (for finite MDP):

val(s) = Y m(als1) Y p(s'rlsi,a) [r+qvn(s)]
¢ il v (s) are variables
vn(s2) = ZW(‘”SQ) ZP(SI’MSQ’ a) [r +yvr(s)] m(als), p(s',7r|s,a), r,

and ~ are constants

v (8p) = Z 7(alsy) Zp(s/, r|sn, a) [+ yvx(s')]

e Value function v, is unique solution to system

e Solve for v; with any method to solve linear systems (e.g. Gauss elimination)
37



Solving the Bellman Optimality Equation

Bellman optimality equation for v, forms a system of n non-linear equations with n
variables

e Equations are non-linear due to max operator
e Optimal value function v, is unique solution to system

e Solve for v, with any method to solve non-linear equation systems
Can solve related set of equations for ¢ / g

Once we have v, or q., we know optimal policy 7, (why?)
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Recap: The Main ldeas

Markov decision process is the canonical way to model RL problems:

(S, A, r,p,7). (1)

Policy is the agent's strategy for assigning actions to states: 7 : S — A (can be
stochastic, too).

Goal is to find a policy that maximizes expected cumulative reward.

e Value: vr(s), Action-value: ¢r(s,a): capture expected cumulative discounted reward.
qr($, p p
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RL vs. Planning

e RL problem: efficiently learn a high-value policy by interacting with an MDP.

e Planning problem: given an MDP (we know all of its components), compute the

optimal policy.
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Required:
e RL book, Chapter 3 (3.1-3.7)

Optional:
e Dynamic Programming
by Richard Bellman (university library has copies)

e Markov Decision Processes: Discrete Stochastic Dynamic Programming
by Martin Puterman (university library has copies)

e Tsitsiklis, J., Van Roy, B. (2002). On Average Versus Discounted Reward
Temporal-Difference Learning. Machine Learning, 49, 179-191
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[Extra/not examined] Ergodicity and Average Reward

For finite MDP and non-terminating episode, any policy 7 will produce an ergodic set of
states S:

e Every state in S visited infinitely often

e Steady-state distribution: Pr(s) = limy_,oo Pr{S; = s | Ag,..., Ay—1 ~ 7}

Performance of m can be measured by average reward:
h

o1
r(m) = hh_)rgo 7 ;E[Rt | So, Aoy vy Ap—1 ~ 7]

Independent of

. /
= ES Pr(s) Za: m(als) ZP(S s, a)r initial state Sy!
s'.r
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[Extra/not examined] Discounting and Average Reward

Maximising discounted return over steady-state dist. is same as maximising average

32 Pl ) = 5 Pr(e) S nlals) D pls s rlss )l -+ 70

reward!

+ZP Z (als) Y p(s',rls, @) [yve(s)]
77)+72P7r(5/)v

=r(m) +7[r(m) +7 > Pe(s)v

= 7(m) +yr(m) + () + () + -

= has no effect on maximisation!
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[Extra/not examined] Discounting and Average Reward

We will focus on discounted return since:

e Most of current RL theory was developed for discounted return

e Discounted and average setting give same limit results for v — 1

= This is why most often people use v € [0.95,0.99]

e Discounted return works well for finite and infinite episodes
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