
Reinforcement Learning

Dynamic Programming (part 2) and Monte Carlo Methods

Michael Herrmann, David Abel

Based on slides by Stefano V. Albrecht

31 January 2025

Lecture Outline

• Value Iteration

• Dynamic programming (part 2)

• DP examples

• Monte Carlo policy evaluation

• Monte Carlo control with...

• Exploring starts

• Soft policies

• Off-policy learning

• Importance sampling

1

Policy Iteration and Value Iteration

2

Example: Jack’s Car Rental

• Two car rental locations

• Cars are requested and returned randomly based on a distribution (see book)

• States: (n1, n2) where ni is number of cars at location i (max 20 each)

• Actions: number of cars moved from one location to other (max 5)

(positive is from location 1 to 2, negative is from 2 to 1)

• Rewards:

+$10 per rented car in time step

−$2 per moved car in time step

• γ = 0.9

3

Example: Jack’s Car Rental

4

Value Iteration

Iterative policy evaluation may take

many sweeps vk → vk+1 to

converge

Do we have to wait until

convergence before policy

improvement?

4.2. Policy Improvement 77

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
 for the

random policy
vk greedy policy

 w.r.t. vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.

5

Value Iteration

Iterative policy evaluation uses Bellman equation as operator:

vk+1(s) =
∑
a

π(a|s)
∑
s′,r

p(s ′, r |s, a)
[
r + γvk(s ′)

]
for all s ∈ S

Value iteration uses Bellman optimality equation as operator:

vk+1(s) = max
a

∑
s′,r

p(s ′, r |s, a)
[
r + γvk(s ′)

]
for all s ∈ S

• Combines one sweep of iterative policy evaluation and policy improvement

• Sequence converges to optimal policy

(can show that Bellman optimality operator is γ-contraction)

6

Value Iteration

7

Asynchronous Dynamic Programming

DP methods so far perform exhaustive sweeps:

Policy evaluation and improvement for all s ∈ S ⇒ prohibitive if state space large!

Asynchronous DP methods evaluate and improve policy on subset of states:

• Gives flexibility to choose best states to update

⇒ e.g. random states, recently visited states (real-time DP)

• Can perform updates in parallel on multiple processors

• Still guaranteed to converge to optimal policy if all states in S are updated infinitely

many times in the limit

8

Conclusion on Dynamic Programming

DP methods iterate through policy evaluation and

improvement until convergence to optimal value

function v∗ and policy π∗

• Policy evaluation via repeated application of

Bellman operator

• Requires complete knowledge of MDP model:

p(s ′, r |s, a)

Can we compute optimal policy without

knowledge of complete model?

9

Monte Carlo Policy Evaluation

Monte Carlo (MC) methods learn value function based on experience

• Experience: entire episodes E i = < S i
0,A

i
0,R

i
1, S

i
1,A

i
1,R

i
2, ...,S

i
Ti
>

MC does not require complete model p(s ′, r |s, a), only requires sampled episodes

Two ways to obtain episodes:

• Real experience: generate episodes directly from “real world”

• Simulated experience: use simulation model p̂ to sample episodes

— p̂(s, a) returns a pair (s ′, r) with probability p(s ′, r |s, a)

10

Monte Carlo Policy Evaluation

Monte Carlo (MC) Policy Evaluation:

• Estimate value function by averaging sample returns:

vπ(s)
.

= Eπ

[
T−1∑
k=t

γk−tRk+1|St = s

]
≈ 1

|E(s)|
∑

ti ∈E(s)

Ti−1∑
k=ti

γk−ti R i
k+1

where for each past episode E i = < S i
0,A

i
0,R

i
1, S

i
1,A

i
1,R

i
2, ...,S

i
Ti
>:

— First-visit MC: E(s) contains first time ti for which S i
ti

= s in E i

— Every-visit MC: E(s) contains all times ti for which S i
ti

= s in E i

• Both methods converge to vπ(s) as |E(s)| → ∞

11

First-Visit Monte Carlo Policy Evaluation

12

See Tutorial 5

Example: Blackjack

13

Ace worth 1

or 11

Hidden card

Example: Blackjack

14

Estimate of vπ using MC ...

Player policy π:

stick if player sum is 20

or 21, else hit

States s (3-tuple):

– Player sum (12–21)

– Dealer card (ace–10)

– Usable ace?

Example: Blackjack

14

Estimate of vπ using MC ...

Player policy π:

stick if player sum is 20

or 21, else hit

States s (3-tuple):

– Player sum (12–21)

– Dealer card (ace–10)

– Usable ace?

States in Blackjack

Couldn’t we just define states as St = {Player cards, Dealer card}?

• Tricky: states would have variable length (player cards)

• If we fix maximum number of player cards to 4, then there are 105 = 100, 000 possible

states! (ignoring face cards and ordering)

Blackjack example uses engineered state features:

• Fixed length: St = (Player sum, Dealer card, Usable ace?)

• Player sum limited to range 12–21 because decision below 12 is trivial (always hit)

• Number of states: 10 ∗ 10 ∗ 2 = 200 → much smaller problem!

• Still has all relevant information

15

States in Blackjack

Couldn’t we just define states as St = {Player cards, Dealer card}?

• Tricky: states would have variable length (player cards)

• If we fix maximum number of player cards to 4, then there are 105 = 100, 000 possible

states! (ignoring face cards and ordering)

Blackjack example uses engineered state features:

• Fixed length: St = (Player sum, Dealer card, Usable ace?)

• Player sum limited to range 12–21 because decision below 12 is trivial (always hit)

• Number of states: 10 ∗ 10 ∗ 2 = 200 → much smaller problem!

• Still has all relevant information

15

Blackjack and Dynamic Programming

Can we solve Blackjack MDP with DP methods?

• Yes, in principle, because we know complete MDP

• But computing p(s ′, r |s, a) can be complicated!

E.g. what is probability of +1 reward as function of Dealer’s showing card?

• On other hand, easy to code a simulation model:

— Use Dealer rule to sample cards until stick/bust, then compute reward

— Reward outcome is distributed by p(s ′, r |s, a)

• MC can evaluate policy without knowledge of probabilities p(s ′, r |s, a)

16

Blackjack and Dynamic Programming

Can we solve Blackjack MDP with DP methods?

• Yes, in principle, because we know complete MDP

• But computing p(s ′, r |s, a) can be complicated!

E.g. what is probability of +1 reward as function of Dealer’s showing card?

• On other hand, easy to code a simulation model:

— Use Dealer rule to sample cards until stick/bust, then compute reward

— Reward outcome is distributed by p(s ′, r |s, a)

• MC can evaluate policy without knowledge of probabilities p(s ′, r |s, a)

16

Monte Carlo Estimation of Action Values

MC methods can learn vπ without knowledge of model p(s ′, r |s, a)

⇒ But improving policy π from vπ requires model (why?)

Must estimate action values:

qπ(s, a)
.

= Eπ[Gt |St = s,At = a]

• Improve policy without model: π′(s) = arg maxa qπ(s, a)

• Use same MC methods to learn qπ, but visits are to (s, a)-pairs

• Converges to qπ if every (s, a)-pair visited infinitely many times in limit

E.g. exploring starts: every (s, a)-pair has non-zero probability

of being starting pair of episode

17

Monte Carlo Estimation of Action Values

MC methods can learn vπ without knowledge of model p(s ′, r |s, a)

⇒ But improving policy π from vπ requires model (why?)

Must estimate action values:

qπ(s, a)
.

= Eπ[Gt |St = s,At = a]

• Improve policy without model: π′(s) = arg maxa qπ(s, a)

• Use same MC methods to learn qπ, but visits are to (s, a)-pairs

• Converges to qπ if every (s, a)-pair visited infinitely many times in limit

E.g. exploring starts: every (s, a)-pair has non-zero probability

of being starting pair of episode
17

Monte Carlo Control

• MC policy evaluation:

Estimate qπ using MC method

• Policy improvement:

Improve π by making greedy wrt qπ

18

Monte Carlo Control with Exploring Starts

Greedy policy meets conditions for policy

improvement theorem:

qπk (s, πk+1(s)) = qπk (s, arg max
a

qπk (s, a))

= max
a

qπk (s, a)

≥ qπk (s, πk(s)) (why?)

= vπk (s)

Assumes exploring starts and infinite MC iterations

• In practice, we update only to a given performance threshold

• Or alternate between evaluation and improvement per episode

19

Monte Carlo Control with Exploring Starts

20

Blackjack Example with MC–ES

Policy π:

stick if player sum

is 20 or 21, else hit

Exploring starts:

sample initial states

uniformly randomly

21

Monte Carlo Control with Soft Policies

Convergence to qπ requires that all (s, a)-pairs are visited infinitely many times

• Exploring starts guarantee this, but impractical (why?)

Other approach: use soft policy such that π(a|s) > 0 for all s, a

• e.g. ε-soft policy: π(a|s) ≥ ε/|A| for ε > 0

• Policy improvement: make policy ε-greedy wrt qπ

π′(a|s)
.

=

{
ε/|A|+ (1− ε) if a = arg maxa′ qπ(s, a′)

ε/|A| else

22

Monte Carlo Control with Soft Policies

Convergence to qπ requires that all (s, a)-pairs are visited infinitely many times

• Exploring starts guarantee this, but impractical (why?)

Other approach: use soft policy such that π(a|s) > 0 for all s, a

• e.g. ε-soft policy: π(a|s) ≥ ε/|A| for ε > 0

• Policy improvement: make policy ε-greedy wrt qπ

π′(a|s)
.

=

{
ε/|A|+ (1− ε) if a = arg maxa′ qπ(s, a′)

ε/|A| else

22

Monte Carlo Control with Soft Policies

ε-greedy policy meets conditions for policy improvement theorem:

qπ(s, π′(s)) =
∑
a

π′(a|s) qπ(s, a)

=
ε

|A|
∑
a

qπ(s, a) + (1− ε) max
a

qπ(s, a)

≥ ε

|A|
∑
a

qπ(s, a) + (1− ε)
∑
a

π(a|s)− ε/|A|
1− ε

qπ(s, a) (why?)

=
ε

|A|
∑
a

qπ(s, a)− ε

|A|
∑
a

qπ(s, a) +
∑
a

π(a|s) qπ(s, a)

= vπ(s)

• Thus, π′ better or equal to π, but both are still ε-soft

• qπ(s, π′(s)) = vπ(s) only when π′ and π both optimal ε-soft policies
23

Monte Carlo Control with Soft Policies

24

Off-Policy Methods

Like exploring starts, soft policies ensure all (s, a) are visited infinitely many times

• But policies restricted to be soft

⇒ Optimal policy is usually deterministic!

• Could slowly reduce ε, but not clear how fast

Other approach: off-policy learning

• Learn qπ based on experience generated with behaviour policy µ 6= π

• Requires “coverage”: if π(a|s) > 0 then µ(a|s) > 0, for all s, a

— e.g. use soft policy µ

• π can be deterministic → usually the greedy policy

25

Off-Policy Methods

Like exploring starts, soft policies ensure all (s, a) are visited infinitely many times

• But policies restricted to be soft

⇒ Optimal policy is usually deterministic!

• Could slowly reduce ε, but not clear how fast

Other approach: off-policy learning

• Learn qπ based on experience generated with behaviour policy µ 6= π

• Requires “coverage”: if π(a|s) > 0 then µ(a|s) > 0, for all s, a

— e.g. use soft policy µ

• π can be deterministic → usually the greedy policy

25

Discussion: On-Policy vs Off-Policy Methods

On-policy:

Learn qπ with experience generated

using policy π

Off-policy:

Learn qπ with experience generated

using policy µ 6= π

26

Importance Sampling Ratio

We have episodes generated from µ

⇒ Expected return at t is Eµ[Gt |St = s] = vµ(s)

Fix expectation with sampling importance ratio:

ρt:T
.

=

∏T−1
k=t π(Ak |Sk) p(Sk+1,Rk+1|Sk ,Ak)∏T−1
k=t µ(Ak |Sk) p(Sk+1,Rk+1|Sk ,Ak)

=
T−1∏
k=t

π(Ak |Sk)

µ(Ak |Sk)

• Eµ[ρt:T Gt |St = s] = vπ(s)

27

Importance Sampling Ratio

We have episodes generated from µ

⇒ Expected return at t is Eµ[Gt |St = s] = vµ(s)

Fix expectation with sampling importance ratio:

ρt:T
.

=

∏T−1
k=t π(Ak |Sk) p(Sk+1,Rk+1|Sk ,Ak)∏T−1
k=t µ(Ak |Sk) p(Sk+1,Rk+1|Sk ,Ak)

=
T−1∏
k=t

π(Ak |Sk)

µ(Ak |Sk)

• Eµ[ρt:T Gt |St = s] = vπ(s)

27

Importance Sampling Ratio

Eµ[ρt:T Gt |St = s] =
∑

E :St=s

[
T−1∏
k=t

µ(Ak |Sk) p(Sk+1,Rk+1|Sk ,Ak)

]
ρt:T Gt

=
∑

E :St=s

[
T−1∏
k=t

µ(Ak |Sk) p(Sk+1,Rk+1|Sk ,Ak)

]
T−1∏
k=t

π(Ak |Sk)

µ(Ak |Sk)
Gt

=
∑

E :St=s

[
T−1∏
k=t

π(Ak |Sk) p(Sk+1,Rk+1|Sk ,Ak)

]
Gt

= vπ(s)

28

Evaluating Policies with Importance Sampling

Denote episodes E i = < S i
0,A

i
0,R

i
1, S

i
1,A

i
1,R

i
2, ...,S

i
Ti
>

Define E(s)/E(s, a) as before for first-visit or every-visit MC

Estimate vπ/qπ as

vπ(s) ≈ η−1
∑

ti ∈E(s)

ρti :Ti
G i
ti

qπ(s, a) ≈ η−1
∑

ti ∈E(s,a)

ρti+1:Ti
G i
ti

(why ti + 1?)

• Ordinary importance sampling: η = |E(s, a)|
• Weighted importance sampling: η =

∑
ti∈E(s) ρti :Ti

resp. η =
∑

ti∈E(s,a) ρti+1:Ti

29

Off-Policy Value Estimation in Blackjack Example

π : stick if player sum is 20

or 21, else hit

µ : uniformly random

s : player sum 13

dealer showing 2

usable ace

True value:

vπ(s) ≈ −0.27726

30

Reading

Required:

• RL book, Chapter 5 (5.1–5.7)

Optional:

• Sequential Monte Carlo Methods in Practice

Arnaud Doucet, Nando de Freitas, Neil Gordon (editors)

University library has copies

31

