Reinforcement Learning

Dynamic Programming (part 2) and Monte Carlo Methods

Michael Herrmann, David Abel Based on slides by Stefano V. Albrecht

31 January 2025

Lecture Outline

- Value Iteration
- Dynamic programming (part 2)
- DP examples
- Monte Carlo policy evaluation
- Monte Carlo control with...
 - Exploring starts
 - Soft policies
 - Off-policy learning
- Importance sampling

Policy Iteration and Value Iteration

Policy Iteration

1. Initialization $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation Repeat $\Delta \leftarrow 0$ For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{s',r} p(s', r|s, \pi(s)) [r + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number)

3. Policy Improvement policy-stable \leftarrow true For each $s \in S$: $a \leftarrow \pi(s)$ $\pi(s) \leftarrow \arg \max_a \sum_{s',r} p(s', r|s, a) [r + \gamma V(s')]$ If $a \neq \pi(s)$, then policy-stable \leftarrow false If policy-stable, then stop and return V and π ; else go to 2

Value Iteration

Initialize array V arbitrarily (e.g., V(s) = 0 for all $s \in S^+$)

$$\begin{split} & \text{Repeat} \\ & \Delta \leftarrow 0 \\ & \text{For each } s \in \mathbb{S}: \\ & v \leftarrow V(s) \\ & V(s) \leftarrow \max_a \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big] \\ & \Delta \leftarrow \max(\Delta, |v-V(s)|) \\ & \text{until } \Delta < \theta \text{ (a small positive number)} \end{split}$$

Output a deterministic policy, π , such that $\pi(s) = \arg \max_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$

- Two car rental locations
- Cars are requested and returned randomly based on a distribution (see book)
- States: (n_1, n_2) where n_i is number of cars at location i (max 20 each)
- Actions: number of cars moved from one location to other (max 5) (positive is from location 1 to 2, negative is from 2 to 1)
- Rewards:
 - +\$10 per rented car in time step -\$2 per moved car in time step
- γ = 0.9

Example: Jack's Car Rental

Iterative policy evaluation may take

many sweeps $v_k
ightarrow v_{k+1}$ to

converge

Do we have to wait until convergence before policy improvement?

$$k = 3$$

k = 10

 $k = \infty$

0.0 -2.4 -2.9 -3.0 -2.9 -3.0 -2.9

Iterative policy evaluation uses Bellman equation as operator:

$$v_{k+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')
ight]$$
 for all $s \in \mathcal{S}$

Value iteration uses Bellman optimality equation as operator:

$$v_{k+1}(s) = \max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')
ight]$$
 for all $s \in \mathcal{S}$

- Combines one sweep of iterative policy evaluation and policy improvement
- Sequence converges to optimal policy (can show that Bellman optimality operator is γ -contraction)

Initialize array V arbitrarily (e.g., V(s) = 0 for all $s \in S^+$) Repeat $\Delta \leftarrow 0$ For each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number)

Output a deterministic policy, π , such that $\pi(s) = \arg \max_a \sum_{s',r} p(s', r|s, a) [r + \gamma V(s')]$ DP methods so far perform exhaustive *sweeps*:

Policy evaluation and improvement for all $s \in S \Rightarrow$ prohibitive if state space large!

Asynchronous DP methods evaluate and improve policy on subset of states:

- Gives flexibility to choose best states to update
 - \Rightarrow e.g. random states, recently visited states (real-time DP)
- Can perform updates in parallel on multiple processors
- Still guaranteed to converge to optimal policy if all states in $\mathcal S$ are updated infinitely many times in the limit

DP methods iterate through policy evaluation and improvement until convergence to optimal value function v_* and policy π_*

- Policy evaluation via repeated application of Bellman operator
- Requires complete knowledge of MDP model: p(s', r|s, a)

Can we compute optimal policy without knowledge of complete model?

Monte Carlo (MC) methods learn value function based on experience

• Experience: entire episodes $E^i = \langle S_0^i, A_0^i, R_1^i, S_1^i, A_1^i, R_2^i, ..., S_{T_i}^i \rangle$

MC does not require complete model p(s', r|s, a), only requires sampled episodes

Two ways to obtain episodes:

- Real experience: generate episodes directly from "real world"
- Simulated experience: use simulation model \hat{p} to sample episodes

 $-\hat{p}(s,a)$ returns a pair (s',r) with probability p(s',r|s,a)

Monte Carlo Policy Evaluation

Monte Carlo (MC) Policy Evaluation:

• Estimate value function by averaging sample returns:

$$egin{array}{lll} egin{array}{lll} v_{\pi}(s) &\doteq & \mathbb{E}_{\pi}iggl[\sum\limits_{k=t}^{T-1} \gamma^{k-t} R_{k+1} | S_t = s iggr] &pprox & rac{1}{|\mathcal{E}(s)|} \sum\limits_{t_i \,\in\, \mathcal{E}(s)} & \sum\limits_{k=t_i}^{T_i-1} \gamma^{k-t_i} \, R_{k+1}^i \end{array}$$

where for each past episode $E^i = \langle S_0^i, A_0^i, R_1^i, S_1^i, A_1^i, R_2^i, ..., S_{T_i}^i \rangle$:

- First-visit MC: $\mathcal{E}(s)$ contains first time t_i for which $S_{t_i}^i = s$ in E^i

- Every-visit MC: $\mathcal{E}(s)$ contains all times t_i for which $S_{t_i}^i = s$ in E^i

• Both methods converge to $v_\pi(s)$ as $|\mathcal{E}(s)| o \infty$

Initialize:

 $\begin{array}{l} \pi \leftarrow \text{policy to be evaluated} \\ V \leftarrow \text{an arbitrary state-value function} \\ Returns(s) \leftarrow \text{an empty list, for all } s \in \mathbb{S} \end{array}$

Repeat forever:

Generate an episode using π For each state *s* appearing in the episode: $G \leftarrow$ return following the first occurrence of *s* Append *G* to Returns(s) $V(s) \leftarrow$ average(Returns(s))

First, player samples cards from deck (hit) until stop (stick) Then, dealer samples cards from deck (hit) until sum > 16 (stick)

Player loses (-1 reward) if bust (card sum > 21) Player wins (+1 reward) if Dealer bust or Player sum > Dealer sum

Player policy π :

stick if player sum is 20 or 21, else hit

Estimate of v_{π} using MC ...

States *s* **(3-tuple)**:

- Player sum (12-21)
- Dealer card (ace-10)
- Usable ace?

Example: Blackjack

Couldn't we just define states as $S_t = \{ Player cards, Dealer card \}$?

- Tricky: states would have variable length (player cards)
- If we fix maximum number of player cards to 4, then there are $10^5 = 100,000$ possible states! (ignoring face cards and ordering)

Couldn't we just define states as $S_t = \{ Player cards, Dealer card \}$?

- Tricky: states would have variable length (player cards)
- If we fix maximum number of player cards to 4, then there are $10^5 = 100,000$ possible states! (ignoring face cards and ordering)

Blackjack example uses engineered state features:

- Fixed length: $S_t = (Player sum, Dealer card, Usable ace?)$
- Player sum limited to range 12-21 because decision below 12 is trivial (always hit)
- Number of states: $10 * 10 * 2 = 200 \rightarrow$ much smaller problem!
- Still has all relevant information

Can we solve Blackjack MDP with DP methods?

- Yes, in principle, because we know complete MDP
- But computing p(s', r|s, a) can be complicated!
 - E.g. what is probability of +1 reward as function of Dealer's showing card?

Can we solve Blackjack MDP with DP methods?

- Yes, in principle, because we know complete MDP
- But computing p(s', r|s, a) can be complicated!
 E.g. what is probability of +1 reward as function of Dealer's showing card?
- On other hand, easy to code a simulation model:
 - Use Dealer rule to sample cards until stick/bust, then compute reward
 - Reward outcome is distributed by p(s', r|s, a)
- MC can evaluate policy without knowledge of probabilities p(s', r|s, a)

Monte Carlo Estimation of Action Values

MC methods can learn v_{π} without knowledge of model p(s', r|s, a)

 \Rightarrow But improving policy π from v_{π} requires model (*why*?)

MC methods can learn v_{π} without knowledge of model p(s', r|s, a) \Rightarrow But improving policy π from v_{π} requires model (*why*?)

Must estimate action values:

$$q_{\pi}(s,a) \doteq \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$$

- Improve policy without model: $\pi'(s) = \arg \max_a q_{\pi}(s, a)$
- Use same MC methods to learn q_{π} , but visits are to (s, a)-pairs
- Converges to q_{π} if every (s, a)-pair visited infinitely many times in limit

E.g. exploring starts: every (s, a)-pair has non-zero probability of being starting pair of episode

- MC policy evaluation:
 Estimate *q*_π using MC method
- Policy improvement:

Improve π by making greedy wrt q_{π}

Monte Carlo Control with Exploring Starts

Greedy policy meets conditions for policy improvement theorem:

$$egin{aligned} q_{\pi_k}(s,\pi_{k+1}(s)) &= q_{\pi_k}(s,rg\max_a q_{\pi_k}(s,a)) \ &= \max_a q_{\pi_k}(s,a) \ &\geq q_{\pi_k}(s,\pi_k(s)) \quad (why?) \ &= v_{\pi_k}(s) \end{aligned}$$

Assumes exploring starts and infinite MC iterations

- In practice, we update only to a given performance threshold
- Or alternate between evaluation and improvement per episode

Monte Carlo Control with Exploring Starts

```
Initialize, for all s \in S, a \in \mathcal{A}(s):

Q(s, a) \leftarrow \text{arbitrary}

\pi(s) \leftarrow \text{arbitrary}

Returns(s, a) \leftarrow \text{empty list}
```

Repeat forever:

Choose $S_0 \in S$ and $A_0 \in \mathcal{A}(S_0)$ s.t. all pairs have probability > 0 Generate an episode starting from S_0, A_0 , following π For each pair s, a appearing in the episode:

 $G \leftarrow$ return following the first occurrence of s, a

Append G to Returns(s, a)

 $Q(s,a) \leftarrow \operatorname{average}(Returns(s,a))$

For each s in the episode:

 $\pi(s) \gets \operatorname{arg\,max}_a Q(s,a)$

Blackjack Example with MC–ES

Convergence to q_{π} requires that all (s, a)-pairs are visited infinitely many times

• Exploring starts guarantee this, but impractical (why?)

Convergence to q_{π} requires that all (s, a)-pairs are visited infinitely many times

• Exploring starts guarantee this, but impractical (why?)

Other approach: use soft policy such that $\pi(a|s) > 0$ for all s, a

- e.g. ϵ -soft policy: $\pi(a|s) \geq \epsilon/|\mathcal{A}|$ for $\epsilon > 0$
- **Policy improvement:** make policy ϵ -greedy wrt q_{π}

$$\pi'(a|s) \doteq \left\{ egin{array}{l} \epsilon/|\mathcal{A}| + (1-\epsilon) & ext{if} \ a = rg\max_{a'} q_{\pi}(s,a') \ \ \epsilon/|\mathcal{A}| & ext{else} \end{array}
ight.$$

 $\epsilon\textsc{-}\mathsf{greedy}$ policy meets conditions for policy improvement theorem:

$$\begin{aligned} q_{\pi}(s,\pi'(s)) &= \sum_{a} \pi'(a|s) \, q_{\pi}(s,a) \\ &= \frac{\epsilon}{|\mathcal{A}|} \sum_{a} q_{\pi}(s,a) + (1-\epsilon) \max_{a} q_{\pi}(s,a) \\ &\geq \frac{\epsilon}{|\mathcal{A}|} \sum_{a} q_{\pi}(s,a) + (1-\epsilon) \sum_{a} \frac{\pi(a|s) - \epsilon/|\mathcal{A}|}{1-\epsilon} q_{\pi}(s,a) \quad (why?) \\ &= \frac{\epsilon}{|\mathcal{A}|} \sum_{a} q_{\pi}(s,a) - \frac{\epsilon}{|\mathcal{A}|} \sum_{a} q_{\pi}(s,a) + \sum_{a} \pi(a|s) \, q_{\pi}(s,a) \\ &= v_{\pi}(s) \end{aligned}$$

- Thus, π' better or equal to π , but both are still ϵ -soft
- $q_{\pi}(s,\pi'(s)) = v_{\pi}(s)$ only when π' and π both optimal ϵ -soft policies

Monte Carlo Control with Soft Policies

Initialize, for all $s \in S$, $a \in \mathcal{A}(s)$: $Q(s, a) \leftarrow \text{arbitrary}$ $Returns(s, a) \leftarrow \text{empty list}$ $\pi(a|s) \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}$

Repeat forever:

(a) Generate an episode using π (b) For each pair s, a appearing in the episode: $G \leftarrow$ return following the first occurrence of s, aAppend G to Returns(s, a) $Q(s, a) \leftarrow \operatorname{average}(Returns(s, a))$ (c) For each s in the episode: $A^* \leftarrow \arg \max_a Q(s, a)$ For all $a \in \mathcal{A}(s)$: $\pi(a|s) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(s)| & \text{if } a \neq A^* \end{cases}$

Like exploring starts, soft policies ensure all (s, a) are visited infinitely many times

- But policies restricted to be soft
 - \Rightarrow Optimal policy is usually deterministic!
- Could slowly reduce $\epsilon,$ but not clear how fast

Like exploring starts, soft policies ensure all (s, a) are visited infinitely many times

- But policies restricted to be soft
 - \Rightarrow Optimal policy is usually deterministic!
- Could slowly reduce ϵ , but not clear how fast

Other approach: off-policy learning

- Learn q_{π} based on experience generated with *behaviour policy* $\mu
 eq \pi$
- Requires "coverage": if π(a|s) > 0 then μ(a|s) > 0, for all s, a
 e.g. use soft policy μ
- π can be deterministic ightarrow usually the greedy policy

On-policy:

Off-policy:

Learn q_{π} with experience generated using policy π Learn q_{π} with experience generated using policy $\mu \neq \pi$

We have episodes generated from $\boldsymbol{\mu}$

 \Rightarrow Expected return at t is $\mathbb{E}_{\mu}[G_t|S_t = s] = v_{\mu}(s)$

We have episodes generated from $\boldsymbol{\mu}$

 \Rightarrow Expected return at t is $\mathbb{E}_{\mu}[G_t|S_t = s] = v_{\mu}(s)$

Fix expectation with sampling importance ratio:

$$\rho_{t:T} \doteq \frac{\prod_{k=t}^{T-1} \pi(A_k|S_k) \, p(S_{k+1}, R_{k+1}|S_k, A_k)}{\prod_{k=t}^{T-1} \mu(A_k|S_k) \, p(S_{k+1}, R_{k+1}|S_k, A_k)} = \prod_{k=t}^{T-1} \frac{\pi(A_k|S_k)}{\mu(A_k|S_k)}$$

• $\mathbb{E}_{\mu}[\rho_{t:T} G_t | S_t = s] = v_{\pi}(s)$

Importance Sampling Ratio

$$\mathbb{E}_{\mu}[\rho_{t:T} \ G_t | S_t = s] = \sum_{E:S_t = s} \left[\prod_{k=t}^{T-1} \mu(A_k | S_k) \, p(S_{k+1}, R_{k+1} | S_k, A_k) \right] \rho_{t:T} \ G_t$$

$$= \sum_{E:S_t=s} \left[\prod_{k=t}^{T-1} \mu(A_k|S_k) \, p(S_{k+1}, R_{k+1}|S_k, A_k) \right] \prod_{k=t}^{T-1} \frac{\pi(A_k|S_k)}{\mu(A_k|S_k)} \, G_t$$

$$= \sum_{E:S_t=s} \left[\prod_{k=t}^{T-1} \pi(A_k | S_k) \, p(S_{k+1}, R_{k+1} | S_k, A_k) \right] G_t$$

$$= v_{\pi}(s)$$

Evaluating Policies with Importance Sampling

Denote episodes $E^i = \langle S^i_0, A^i_0, R^i_1, S^i_1, A^i_1, R^i_2, ..., S^i_{T_i} \rangle$

Define $\mathcal{E}(s)/\mathcal{E}(s,a)$ as before for first-visit or every-visit MC

Estimate v_π/q_π as

$$\begin{aligned} \mathbf{v}_{\pi}(s) &\approx \eta^{-1} \sum_{t_i \in \mathcal{E}(s)} \rho_{t_i:T_i} \, G_{t_i}^i \\ q_{\pi}(s,a) &\approx \eta^{-1} \sum_{t_i \in \mathcal{E}(s,a)} \rho_{t_i+1:T_i} \, G_{t_i}^i \quad (why \ t_i+1?) \end{aligned}$$

- Ordinary importance sampling: $\eta = |\mathcal{E}(s, a)|$
- Weighted importance sampling: $\eta = \sum_{t_i \in \mathcal{E}(s)} \rho_{t_i:T_i}$ resp. $\eta = \sum_{t_i \in \mathcal{E}(s,a)} \rho_{t_i+1:T_i}$

Off-Policy Value Estimation in Blackjack Example

Required:

• RL book, Chapter 5 (5.1–5.7)

Optional:

• Sequential Monte Carlo Methods in Practice Arnaud Doucet, Nando de Freitas, Neil Gordon (editors) University library has copies