Reinforcement Learning

Dynamic Programming (part 2) and Monte Carlo Methods

Michael Herrmann, David Abel
Based on slides by Stefano V. Albrecht

31 January 2025

THE UNIVERSITY of EDINBURGH

)- informatics

Lecture Outline

Value lteration

e Dynamic programming (part 2)

DP examples

Monte Carlo policy evaluation

Monte Carlo control with...
e Exploring starts
e Soft policies

e Off-policy learning

Importance sampling

Policy Iteration and Value Iteration

Policy Iteration Value Iteration
1. Initialization L X X .
V(s) € R and 7(s) € A(s) arbitrarily for all 5 € § Initialize array V arbitrarily (e.g., V(s) =0 for all s € 81)
2. Policy Evaluation Repeat
Repeat A0
A+0 For cach s € 8:
For each s € §: v+ V(s)
v V(s) V(s) « max, y_, . p(s',r]s,a) [r + 'yV(s’)}
V(s) ¢ ., p(s'srls, w(s)) [r + 4V (s)] A max(A, v — V(s)])
A e max(B o= V(s)) until A < 6 (a small positive number)
until A < @ (a small positive number)
3. Policy Tmprovement Output a deterministic polic/y, 7, such that)
policy-stable + true m(s) = arg max, Zsf,rp(s s, a) [T +1V (s)}
For each s € 8:
a <+ 7(s)

m(s) « argmax, 3 p(s',7|s, a) [r + 'yV(s’)}
If a # (s), then policy-stable < false
If policy-stable, then stop and return V and 7; else go to 2

Example: Jack’s Car Rental

e Two car rental locations

e Cars are requested and returned randomly based on a distribution (see book)

States: (n1, n2) where n; is number of cars at location i (max 20 each)

Actions: number of cars moved from one location to other (max 5)
(positive is from location 1 to 2, negative is from 2 to 1)

Rewards:
+$10 per rented car in time step
—$2 per moved car in time step

e v=0.9

Example: Jack’s Car Rental

20

#Cars at first location

(=}
0 #Cars at second location 20 4

Value lteration

0.0[-2.4]-2.9]-3.0 — = |9
k=3 2.4]-2.9/-3.0[-2.9 it la |y
) .) = ol ol ol T 5
lterative policy evaluation may take 2.9-3.01-291-2.4 o i
-3.0|-2.9]-2.4| 0.0 i B
many sweeps vy — Vi1 to
converge 0.0]-6.1|-8.4]-9.0 M Al A
k=10 -6.1|-7.7|-8.4]-8.4 Pl g |y | e Og}iig‘m
-8.4|-8.4[-7.7|-6.1 b Ind I} policy
Do we have to wait until -9.0|-8.4/-6.1| 0.0 Ll > -
convergence before policy
. - 0.0|-14.]-20.|-22. — | |a
Improvement! k= oo -14.|-18.[-20.]-20 HCHCEN
-20.|-20.|-18.]-14. R
-22.-20.|-14.] 0.0 L o -

Value lteration

Iterative policy evaluation uses Bellman equation as operator:

Vir1(s) = Zﬂ(a|s)2p(s', rls,a) [r+yv(s’)] forallse S

a s',r

Value iteration uses Bellman optimality equation as operator:
vikr1(s) = mapr(s’, rls,a) [r+w(s’)] forallse S
a

s'r

e Combines one sweep of iterative policy evaluation and policy improvement

e Sequence converges to optimal policy
(can show that Bellman optimality operator is y-contraction)

Value lteration

Initialize array V arbitrarily (e.g., V(s) = 0 for all s € 8%)

Repeat
A<+ 0
For each s € &:
v < V(s)
V(s) < max, Zs,7rp(s’, r|s, a) [T - VV(S’)}
A + max(A, |v = V(s)])

until A < 6 (a small positive number)

Output a deterministic policy, 7, such that
m(s) = argmaxg, Yy, p(s’,r]s,a) [r +yV(s)]

Asynchronous Dynamic Programming

DP methods so far perform exhaustive sweeps:

Policy evaluation and improvement for all s € § = prohibitive if state space large!

Asynchronous DP methods evaluate and improve policy on subset of states:

e Gives flexibility to choose best states to update

= e.g. random states, recently visited states (real-time DP)
e Can perform updates in parallel on multiple processors

e Still guaranteed to converge to optimal policy if all states in S are updated infinitely
many times in the limit

Conclusion on Dynamic Programming

evaluation

DP methods iterate through policy evaluation and 7
s
improvement until convergence to optimal value /\

function v, and policy 7,
m V

e Policy evaluation via repeated application of
Bellman operator ™~ greedy (V)

e Requires complete knowledge of MDP model:

improvement
p(s',rls, a) .
Can we compute optimal policy without .
knowledge of complete model? .

Monte Carlo Policy Evaluation

Monte Carlo (MC) methods learn value function based on experience

e Experience: entire episodes E' = < S}, Al Ri, Si, A}, Rj, ...,SfT,, >
MC does not require complete model p(s’, r|s, a), only requires sampled episodes

Two ways to obtain episodes:
® Real experience: generate episodes directly from “real world”
e Simulated experience: use simulation model p to sample episodes

— p(s, a) returns a pair (s, r) with probability p(s’, r|s, a)

10

Monte Carlo Policy Evaluation

Monte Carlo (MC) Policy Evaluation:

e Estimate value function by averaging sample returns:

T-1
(s) = Ex ZVk_tRkH'St:s] ~ Z ZWI{ f Rk+1
k=t t,eg(s) k=t;

where for each past episode E' = < S§, A}, Ri, Si, Al R}, ...,SiTi >
— First-visit MC: £(s) contains first time t; for which 5] = s in E'

— Every-visit MC: £(s) contains all times t; for which S{i =sin E'
e Both methods converge to v,(s) as |E(s)| — oo

11

First-Visit Monte Carlo Policy Evaluation

See Tutorial 5
Initialize:
7 <— policy to be evaluated
V < an arbitrary state-value function
Returns(s) < an empty list, for all s € 8

Repeat forever:
Generate an episode using
For each state s appearing in the episode:
G < return following the first occurrence of s
Append G to Returns(s)
V(s) « average(Returns(s))

12

Example: Blackjack

Initial state:

Player Dealer

Ace worth 1 6 A
orl1l ‘ ‘

Hidden card

First, player samples Then, dealer samples
cards from deck (hit) cards from deck (hit)
until stop (stick) until sum > 16 (stick)

Player loses (-1 reward) if bust (card sum > 21)
Player wins (+1 reward) if Dealer bust or Player sum > Dealer sum
13

Example: Blackjack

Player policy m:
stick if player sum is 20
or 21, else hit

Estimate of v, using MC ...

States s (3-tuple):

— Player sum (12-21)
— Dealer card (ace-10)
— Usable ace?

14

Example: Blackjack

After 10,000 episodes After 500,000 episodes

Player policy m:
stick if player sum is 20

. Usable
or 21, else hit ace

States s (3-tuple):
— Player sum (12-21)
— Dealer card (ace-10) No

— Usable ace? usable
ace

States in Blackjack

Couldn’t we just define states as S; = {Player cards, Dealer card}?
e Tricky: states would have variable length (player cards)

e If we fix maximum number of player cards to 4, then there are 10° = 100,000 possible
states! (ignoring face cards and ordering)

15

States in Blackjack

Couldn’t we just define states as S; = {Player cards, Dealer card}?

e Tricky: states would have variable length (player cards)

e If we fix maximum number of player cards to 4, then there are 10° = 100,000 possible
states! (ignoring face cards and ordering)

Blackjack example uses engineered state features:

e Fixed length: S; = (Player sum, Dealer card, Usable ace?)
e Player sum limited to range 12-21 because decision below 12 is trivial (always hit)
e Number of states: 10 * 10 x 2 = 200 — much smaller problem!

e Still has all relevant information

15

Blackjack and Dynamic Programming

Can we solve Blackjack MDP with DP methods?

e Yes, in principle, because we know complete MDP

e But computing p(s’, r|s, a) can be complicated!
E.g. what is probability of +1 reward as function of Dealer’'s showing card?

16

Blackjack and Dynamic Programming

Can we solve Blackjack MDP with DP methods?

e Yes, in principle, because we know complete MDP

e But computing p(s’, r|s, a) can be complicated!

E.g. what is probability of +1 reward as function of Dealer’'s showing card?

e On other hand, easy to code a simulation model:
— Use Dealer rule to sample cards until stick/bust, then compute reward
— Reward outcome is distributed by p(s’, r|s, a)

e MC can evaluate policy without knowledge of probabilities p(s’, r|s, a)

16

Monte Carlo Estimation of Action Values

MC methods can learn v, without knowledge of model p(s’, r|s, a)

= But improving policy 7 from v, requires model (why?) /T\
T
a

17

Monte Carlo Estimation of Action Values

MC methods can learn v, without knowledge of model p(s’, r|s, a)

= But improving policy 7 from v, requires model (why?) /T\
T
a
Must estimate action values: A A Ar
/

gr(s,a) = Ex[G:|S: = s, Ar = a] OO OO O Os

¢ Improve policy without model: 7/(s) = arg max, g (s, a)
e Use same MC methods to learn g, but visits are to (s, a)-pairs
e Converges to q; if every (s, a)-pair visited infinitely many times in limit

E.g. exploring starts: every (s, a)-pair has non-zero probability
of being starting pair of episode
17

Monte Carlo Control

evaluation
e MC policy evaluation: m
Estimate g, using MC method
™ Q

¢ Policy improvement:
d
Improve 7 by making greedy wrt g, 7~ greedy(Q)

improvement

18

Monte Carlo Control with Exploring Starts

Greedy policy meets conditions for policy evaluation

improvement theorem: m
(S, Th41(5)) = G, (s, arg max gr, (s, a))
a
™ Q

= maxgn, (s, a)
> qr, (s, mk(s)) (why?) 7~ greedy(Q)

= Vi, (5) improvement

Assumes exploring starts and infinite MC iterations
e |n practice, we update only to a given performance threshold

e Or alternate between evaluation and improvement per episode

19

Monte Carlo Control with Exploring Starts

Initialize, for all s € §, a € A(s):
Q(s,a) < arbitrary
m(s) < arbitrary
Returns(s,a) < empty list

Repeat forever:
Choose Sy € 8 and Ay € A(Sp) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ag, following 7
For each pair s, a appearing in the episode:
G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s,a))
For each s in the episode:
m(s) < argmax, Q(s,a)
20

Blackjack Example with MC-ES

n*
Poli . STICK
oney T Usable B
stick if player sum ace]
is 20 or 21, else hit HIT

11|
A2345678910

Exploring starts:
o STICK
sample initial states No

T

. usable]
uniformly randomly ace]
HIT

A2345678910
Dealer showing

Monte Carlo Control with Soft Policies

Convergence to g, requires that all (s, a)-pairs are visited infinitely many times

e Exploring starts guarantee this, but impractical (why?)

22

Monte Carlo Control with Soft Policies

Convergence to g, requires that all (s, a)-pairs are visited infinitely many times

e Exploring starts guarantee this, but impractical (why?)

Other approach: use soft policy such that 7(als) > 0 for all s, a
e e.g. esoft policy: m(als) > ¢/| Al for e >0

e Policy improvement: make policy e-greedy wrt g,

e/|Al 4+ (1 —¢€) if a=argmaxy g-(s,a)
m'(als) =
/| Al else

22

Monte Carlo Control with Soft Policies

e-greedy policy meets conditions for policy improvement theorem:
Gr(s,7'(s)) = Z ' (als) gz (s, a)

‘A‘qusa l—e)maxqﬂ(s a)

PR)Z”‘fjj“‘ o(5,3) (why?)
‘A‘qusa |A|Zqﬂsa+z m(als) gx(s, a)
= vx(s)

e Thus, 7’ better or equal to 7, but both are still e-soft

® g:(s,7(s)) = vx(s) only when 7’ and 7 both optimal e-soft policies
23

Monte Carlo Control with Soft Policies

Initialize, for all s € 8, a € A(s):
Q(s,a) « arbitrary
Returns(s,a) < empty list
m(als) < an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s,a appearing in the episode:
G <+ return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s,a))
(c) For each s in the episode:
A* + argmax, Q(s,a)
For all a € A(s):
1—e+¢e/|A(s)] if a= A*
m(als) < { £ /JA(s)] / if £ A"

24

Off-Policy Methods

Like exploring starts, soft policies ensure all (s, a) are visited infinitely many times

e But policies restricted to be soft
= Optimal policy is usually deterministic!

e Could slowly reduce €, but not clear how fast

25

Off-Policy Methods

Like exploring starts, soft policies ensure all (s, a) are visited infinitely many times
e But policies restricted to be soft
= Optimal policy is usually deterministic!

e Could slowly reduce €, but not clear how fast

Other approach: off-policy learning
e Learn g, based on experience generated with behaviour policy u # 7
* Requires “coverage”: if m(a|s) > 0 then p(a|s) > 0, for all s, a

— e.g. use soft policy

e 7 can be deterministic — usually the greedy policy

25

Discussion: On-Policy vs Off-Policy Methods

On-policy: Off-policy:
Learn g, with experience generated Learn g, with experience generated
using policy using policy pu # m

26

Importance Sampling Ratio

We have episodes generated from u

= Expected return at t is E,[G¢|S; = s] = v,.(s)

27

Importance Sampling Ratio

We have episodes generated from u

= Expected return at t is E,[G¢|S; = s] = v,.(s)

Fix expectation with sampling importance ratio:

1. 3 ' (Ak|Sk) p(Ska1s Rer1l Sk, Ak) 5 m(ASK)

Pt:T = _—
T1/2} 1(AKISK) P(Sks 1, Rict1lSk, Ax) 1(Ak|Sk)

k:t

® E,u[pt:T Gt‘St = 5] = VW(S)

27

Importance Sampling Ratio

E, [pe:T Gt|St = s

[T-1

H 1(Ax|Sk) p

[7-1

H 1(Ax|Sk) p

[7T-1

H (Ak|Sk) p

(Sk+1, Riv1/Sk, Ax)

(Sk+1, Riv1/Sk, Ax)

(Sk+1, Riv1/Sk, Ax)

28

Evaluating Policies with Importance Sampling

Denote episodes E' = < S}, A}, Ry, S{, A}, RS, ..., St >
Define £(s)/E(s, a) as before for first-visit or every-visit MC

Estimate v;/qgr as

Q

vz (s)

77_1 Z Pti:T; Gé,

ti€E(s)

Gr(s.a) ~ n! Z pe1:1;, Gt (why t; +17)
ti € E(s,a)

® Ordinary importance sampling: 1 = |E(s, a)|

e Weighted importance sampling: n = Zt,-eg(s) Pt T, resp. n = Zt,-eg(s,a) Pt+1:T;

29

Off-Policy Value Estimation in Blackjack Example

7 : stick if player sum is 20

or 21, else hit \
. Ordinary
= uniformly random Mean \importance
square I \ sampling
s : player sum 13 error \
. (average over [\
dealer showing 2 100 runs) L
usable ace [Weighted impor\tén\se sampling
S~
True value: 0 10 100 1000 10,000
vﬂ(s) ~ —0.27726 Episodes (log scale)

30

Required:
e RL book, Chapter 5 (5.1-5.7)

Optional:

e Sequential Monte Carlo Methods in Practice
Arnaud Doucet, Nando de Freitas, Neil Gordon (editors)
University library has copies

31

