
Reinforcement Learning

Temporal-Difference Learning

Michael Herrmann, David Abel

Based on slides by Stefano V. Albrecht

4 February 2025



Lecture Outline

• Temporal-difference (TD) policy evaluation

• TD control:

• Sarsa

• Q-learning

• n-step TD methods
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Method Comparison

Method Model-free? Bootstrap?

Dynamic Programming No Yes

Monte Carlo Yes No

Temporal-Difference Yes Yes
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Recap: Dynamic Programming
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Recap: Monte Carlo Methods
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Now: Temporal-Difference Learning
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Temporal-Difference Policy Evaluation

General iterative update rule:

NewEstimate← OldEstimate + StepSize [ Target− OldEstimate ]
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Temporal-Difference Policy Evaluation

General iterative update rule:

NewEstimate← OldEstimate + StepSize [ Target− OldEstimate ]

NewEstimate← ( 1− StepSize︸ ︷︷ ︸
α

) OldEstimate + StepSize︸ ︷︷ ︸
α

Target
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Temporal-Difference Policy Evaluation

General iterative update rule:

NewEstimate← OldEstimate + StepSize [ Target− OldEstimate ]

MC update:
V (St)← V (St) + α [ Gt − V (St) ]
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Temporal-Difference Policy Evaluation

General iterative update rule:

NewEstimate← OldEstimate + StepSize [ Target− OldEstimate ]

MC update:
V (St)← V (St) + α [ Gt − V (St) ]

Notice:
vπ(s)

.
= Eπ[Gt |St = s]

= Eπ[Rt+1 + γGt+1|St = s]

= Eπ[Rt+1 + γvπ(St+1)|St = s]
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Temporal-Difference Policy Evaluation

General iterative update rule:

NewEstimate← OldEstimate + StepSize [ Target− OldEstimate ]

MC update:
V (St)← V (St) + α [ Gt − V (St) ]

TD(0) update:

V (St)← V (St) + α [ Rt+1 + γV (St+1)− V (St) ]︸ ︷︷ ︸
“δ−error”
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TD(0) for Policy Evaluation
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Example: Driving Home
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∑t
k=1 Rk V (St) V (S0)(γ = 1)



Example: Driving Home
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MC updates (α = 1) TD updates (α = 1)



Example: Driving Home (Extra)

S0 S1 S2 S3 S4 S5
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V (St)



Convergence of TD(0)

TD(0) converges to vπ with prob. 1 if:

• all states visited infinitely often

and

• standard stochastic approximation conditions (α-reduction)

∀s :
∑

t:St=s

αt →∞ and
∑

t:St=s

α2
t <∞
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Convergence of TD(0)

Intuition: What is the expected TD(0) update?

V (St)← Eπ[(1− α)V (St) + α [Rt+1 + γV (St+1)]] (rewrite)

= (1− α)V (St) + αEπ[Rt+1 + γV (St+1)]

= (1− α)V (St) + α
∑
a

π(a|St)
∑
s′,r

p(s ′, r |St , a)
[
r + γV (s ′)

]
= (1− α)V (St) + α vπ(St)

Bellman operator vπ(St) is contraction mapping with fixed point vπ!

• Expected TD update moves V (St) toward vπ(St) by α

• α used to control averaging in sampling updates
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Advantages of TD Learning

• Like MC: TD does not require full model p(s ′, r |s, a), only experience

• Unlike MC: TD can be fully incremental

⇒ Learn before final return is known

⇒ Less memory and computation

• Both MC and TD converge to vπ/qπ under certain assumptions

⇒ But TD often faster in practice
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Example: Random Walk

π(left/right|s) = 0.5

Values learned by TD(0) after 0/1/10/100

episodes (α = 0.1)
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Example: Random Walk

π(left/right|s) = 0.5

Root mean-squared error averaged over all

states and 100 episodes

TD methods usually learn faster than MC
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On-Policy TD Control: Sarsa

On-policy: learn qπ and improve π while following π

Sarsa:

Q(St ,At)← Q(St ,At) + α [ Rt+1 + γQ(St+1,At+1)− Q(St ,At) ]

• If St+1 terminal state, define Q(St+1,At+1) = 0

• Ensure exploration by using ε-soft policy π

Converges to π∗ with prob 1. if all (s, a) infinitely visited and standard α-reduction

∀s, a :
∑

t:St=s,At=a

αt →∞,
∑

t:St=s,At=a

α2
t <∞

and ε gradually goes to 0 (why?)
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On-Policy TD Control: Sarsa
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See Tutorial 5



Example: Windy Gridworld with Sarsa
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γ = 1.0

ε = 0.1

α = 0.5

Reward −1 until

goal reached



Off-Policy TD Control: Q-Learning

Off-policy: Learn qπ and improve π while following µ

Q-learning:

Q(St ,At)← Q(St ,At) + α
[
Rt+1 + γmax

a
Q(St+1, a)− Q(St ,At)

]
Converges to π∗ with prob. 1 if all (s, a) infinitely visited and standard α-reduction

Why is there no importance sampling ratio?

• Recall: for qπ, ratio defined as
∏T−1

k=t+1 π(Ak |Sk)/µ(Ak |Sk)

• Because a in qπ(s, a) is no random variable
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Off-Policy TD Control: Q-Learning

Off-policy: Learn qπ and improve π while following µ

Q-learning:

Q(St ,At)← Q(St ,At) + α
[
Rt+1 + γmax
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Q(St+1, a)− Q(St ,At)
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Off-Policy TD Control: Q-Learning
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Example: Cliff Walking with Sarsa and Q-Learning
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ε-greedy exploration (ε = 0.1)



n-step TD Methods

TD(0) uses 1-step return:

Gt:t+1
.

= Rt+1 + γVt(St+1)

MC uses full return:

Gt:∞
.

=
∞∑
k=1

γk−1Rt+k

n-step return bridges TD(0) and MC:

Gt:t+n =
n∑

k=1

γk−1Rt+k + γnVt+n−1(St+n)
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n-step TD Methods

n-step return:

Gt:t+n =
n∑

k=1

γk−1Rt+k + γnVt+n−1(St+n)

n-step TD uses n-step return as target:

Vt+n(St)
.

= Vt+n−1(St) + α [Gt:t+n − Vt+n−1(St)]
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n-step TD Methods in Random Walk Example
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On/Off-Policy Learning with n-Step Returns

Can similarly define n-step TD policy learning:

Gt:t+n =
n∑

k=1

γk−1Rt+k + γnQt+n−1(St+n,At+n)

Qt+n(St ,At)
.

= Qt+n−1(St ,At) + αρt+1:t+n [Gt:t+n − Qt+n−1(St ,At)]

with importance ratio

ρt:h
.

=

min(h,T−1)∏
k=t

π(Ak |Sk)

µ(Ak |Sk)
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n-step TD Control in a Gridworld
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Unified View
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⇒ Planning



Reading

Required:

• RL book, Chapter 6 (6.1–6.2, 6.4–6.6) and Chapter 7 (7.1–7.3)

Optional (convergence proofs):

• For TD(0): Dayan, P. (1992). The convergence of TD(λ) for general λ. Machine

Learning, 8(3):341–362

• For Sarsa: Singh, S., Jaakkola, T., Littman, M., Szepesvári, C. (2000). Convergence

results for single-step on-policy reinforcement-learning algorithms. Machine Learning,

38(3):287–308

• For Q-learning: Watkins, C., Dayan, P. (1992). Q-learning. Machine Learning,

8(3-4):279–292
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