Reinforcement Learning

Temporal-Difference Learning

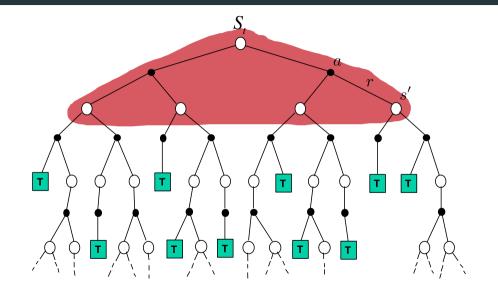
Michael Herrmann, David Abel Based on slides by Stefano V. Albrecht

4 February 2025

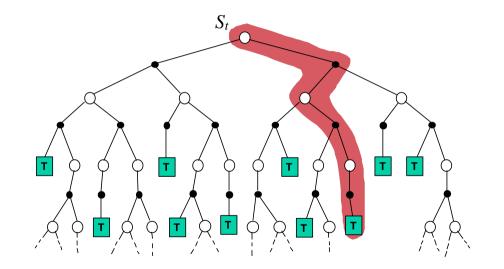
- Temporal-difference (TD) policy evaluation
- TD control:
 - Sarsa
 - Q-learning
- *n*-step TD methods

Method	Model-free?	Bootstrap?
Dynamic Programming	No	Yes
Monte Carlo	Yes	No
Temporal-Difference	Yes	Yes

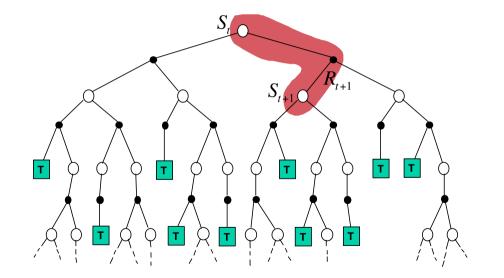
Recap: Dynamic Programming



Recap: Monte Carlo Methods



Now: Temporal-Difference Learning



```
NewEstimate ← OldEstimate + StepSize [ Target - OldEstimate ]
```

```
NewEstimate ← OldEstimate + StepSize [ Target - OldEstimate ]
```

$$\mathsf{NewEstimate} \leftarrow (1 - \underbrace{\mathsf{StepSize}}_{\alpha}) \mathsf{OldEstimate} + \underbrace{\mathsf{StepSize}}_{\alpha} \mathsf{Target}$$

```
NewEstimate ← OldEstimate + StepSize [ Target - OldEstimate ]
```

MC update:

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

```
NewEstimate \leftarrow OldEstimate + StepSize [Target - OldEstimate]
```

MC update:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[\begin{array}{c} G_t - V(S_t) \end{array} \right]$$

Notice:

$$egin{aligned} & \mathbf{v}_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t|S_t=s] \ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_t=s] \ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma \mathbf{v}_{\pi}(S_{t+1})|S_t=s] \end{aligned}$$

Use as target

```
NewEstimate ← OldEstimate + StepSize [ Target - OldEstimate ]
```

MC update:

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

TD(0) update:

$$V(S_t) \leftarrow V(S_t) + \alpha \underbrace{\left[\frac{R_{t+1} + \gamma V(S_{t+1}) - V(S_t)\right]}{"\delta - \text{error"}}}_{"\delta - \text{error"}}$$

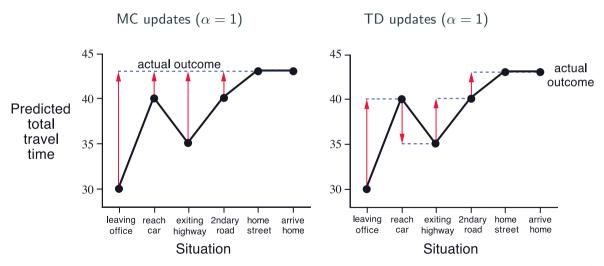
Input: the policy π to be evaluated Algorithm parameter: step size $\alpha \in (0, 1]$ Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0Loop for each episode: Initialize SLoop for each step of episode: $A \leftarrow action given by \pi$ for S Take action A, observe R, S' $V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S) \right]$ $S \leftarrow S'$

until S is terminal

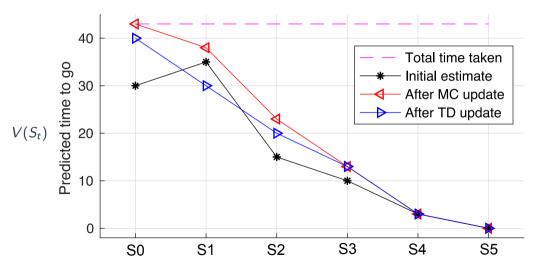
Example: Driving Home

	$(\gamma=1)$	$\sum_{k=1}^{t} R_k$	$V(S_t)$	$V(S_0)$
		Elapsed Time	Predicted	Predicted
	State	(minutes)	$Time \ to \ Go$	Total Time
S_0	leaving office, friday at 6	0	30	30
S_1	reach car, raining	5	35	40
S_2	exiting highway	20	15	35
S_3	2ndary road, behind truck	30	10	40
S_4	entering home street	40	3	43
S_5	arrive home	43	0	43

Example: Driving Home



Example: Driving Home (Extra)



TD(0) converges to v_{π} with prob. 1 if:

- all states visited infinitely often and
- standard stochastic approximation conditions (lpha-reduction)

$$\forall s: \quad \sum_{t:S_t=s} \alpha_t \to \infty \quad \text{and} \quad \sum_{t:S_t=s} \alpha_t^2 < \infty$$

Convergence of TD(0)

Intuition: What is the *expected* TD(0) update?

$$\mathcal{V}(S_t) \leftarrow \mathbb{E}_{\pi}[(1-\alpha)\mathcal{V}(S_t) + \alpha \left[R_{t+1} + \gamma \mathcal{V}(S_{t+1})\right]]$$
 (rewrite)

$$= (1 - \alpha) V(S_t) + \alpha \mathbb{E}_{\pi}[R_{t+1} + \gamma V(S_{t+1})]$$

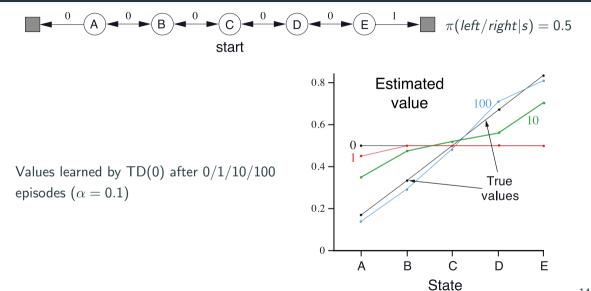
$$= (1 - \alpha)V(S_t) + \alpha \sum_{a} \pi(a|S_t) \sum_{s',r} p(s',r|S_t,a) [r + \gamma V(s')]$$
$$= (1 - \alpha)V(S_t) + \alpha v_{\pi}(S_t)$$

Bellman operator $v_{\pi}(S_t)$ is contraction mapping with fixed point v_{π} !

- Expected TD update moves $V(S_t)$ toward $v_{\pi}(S_t)$ by α
- α used to control averaging in sampling updates

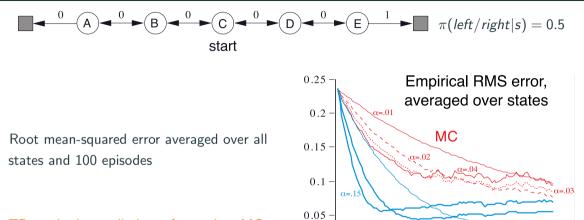
- Like MC: TD does not require full model p(s', r|s, a), only experience
- Unlike MC: TD can be fully incremental
 - \Rightarrow Learn *before* final return is known
 - \Rightarrow Less memory and computation
- Both MC and TD converge to v_π/q_π under certain assumptions
 ⇒ But TD often faster in practice

Example: Random Walk



14

Example: Random Walk



α=.

50

Walks / Episodes

TD

25

0

0

TD methods usually learn faster than MC

100

 $\alpha = .05$

75

On-Policy TD Control: Sarsa

On-policy: learn q_{π} and improve π while following π

Sarsa:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

- If S_{t+1} terminal state, define $Q(S_{t+1}, A_{t+1}) = 0$
- Ensure exploration by using $\epsilon\text{-soft}$ policy π

On-Policy TD Control: Sarsa

On-policy: learn q_{π} and improve π while following π

Sarsa:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

- If S_{t+1} terminal state, define $Q(S_{t+1}, A_{t+1}) = 0$
- Ensure exploration by using $\epsilon\text{-soft}$ policy π

Converges to π_* with prob 1. if all (s, a) infinitely visited and standard α -reduction

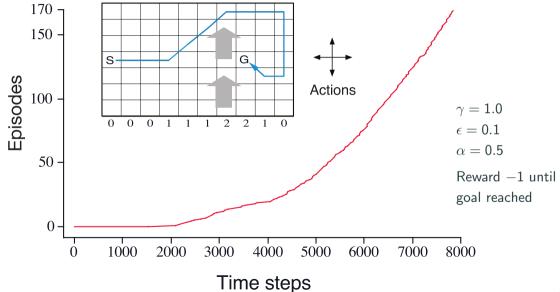
$$\forall s, a: \quad \sum_{t:S_t=s, A_t=a} \alpha_t \to \infty, \quad \sum_{t:S_t=s, A_t=a} \alpha_t^2 < \infty$$

and ϵ gradually goes to 0 (why?)

See Tutorial 5

```
Initialize Q(s, a), \forall s \in S, a \in \mathcal{A}(s), arbitrarily, and Q(terminal-state, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
   Repeat (for each step of episode):
       Take action A, observe R, S'
       Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)
       Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]
       S \leftarrow S': A \leftarrow A':
   until S is terminal
```

Example: Windy Gridworld with Sarsa



Off-policy: Learn q_{π} and improve π while following μ

Q-learning:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[\begin{array}{c} R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \end{array} \right]$$

Converges to π_* with prob. 1 if all (s, a) infinitely visited and standard α -reduction

Off-policy: Learn q_{π} and improve π while following μ

Q-learning:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

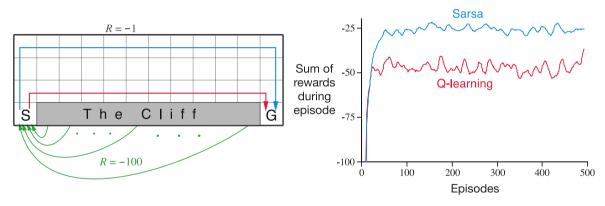
Converges to π_* with prob. 1 if all (s, a) infinitely visited and standard α -reduction

Why is there no importance sampling ratio?

- Recall: for q_{π} , ratio defined as $\prod_{k=t+1}^{T-1} \pi(A_k|S_k)/\mu(A_k|S_k)$
- Because a in $q_{\pi}(s, a)$ is no random variable

Initialize $Q(s, a), \forall s \in S, a \in \mathcal{A}(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$ Repeat (for each episode): Initialize SRepeat (for each step of episode): Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$ $S \leftarrow S'$: until S is terminal

Example: Cliff Walking with Sarsa and Q-Learning



 ϵ -greedy exploration ($\epsilon = 0.1$)

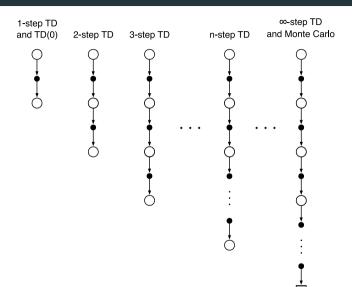
n-step TD Methods

TD(0) uses 1-step return:

$$G_{t:t+1} \doteq R_{t+1} + \gamma V_t(S_{t+1})$$

MC uses full return:

$$G_{t:\infty} \doteq \sum_{k=1}^{\infty} \gamma^{k-1} R_{t+k}$$



n-step TD Methods

TD(0) uses 1-step return:

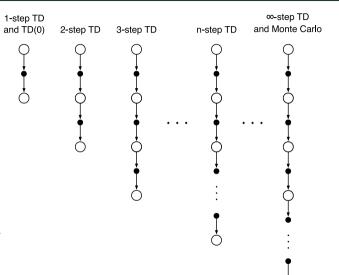
$$G_{t:t+1} \doteq R_{t+1} + \gamma V_t(S_{t+1})$$

MC uses full return:

$$G_{t:\infty} \doteq \sum_{k=1}^{\infty} \gamma^{k-1} R_{t+k}$$

n-step return bridges TD(0) and MC:

$$G_{t:t+n} = \sum_{k=1}^{n} \gamma^{k-1} R_{t+k} + \gamma^{n} V_{t+n-1} (S_{t+n})$$



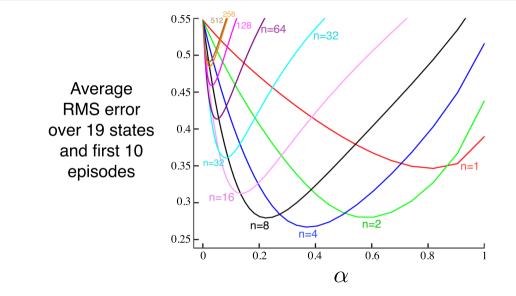
n-step return:

$$G_{t:t+n} = \sum_{k=1}^{n} \gamma^{k-1} R_{t+k} + \gamma^{n} V_{t+n-1}(S_{t+n})$$

n-step TD uses *n*-step return as target:

$$V_{t+n}(S_t) \doteq V_{t+n-1}(S_t) + \alpha \left[\mathbf{G}_{t:t+n} - V_{t+n-1}(S_t) \right]$$

n-step TD Methods in Random Walk Example



On/Off-Policy Learning with n-Step Returns

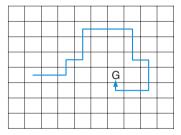
Can similarly define *n*-step TD policy learning:

$$G_{t:t+n} = \sum_{k=1}^{n} \gamma^{k-1} R_{t+k} + \gamma^{n} Q_{t+n-1}(S_{t+n}, A_{t+n})$$

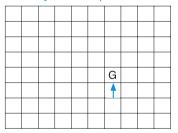
$$Q_{t+n}(S_t, A_t) \doteq Q_{t+n-1}(S_t, A_t) + \alpha \rho_{t+1:t+n} [G_{t:t+n} - Q_{t+n-1}(S_t, A_t)]$$

with importance ratio

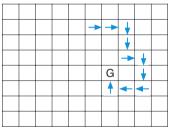
$$\rho_{t:h} \doteq \prod_{k=t}^{\min(h,T-1)} \frac{\pi(A_k|S_k)}{\mu(A_k|S_k)}$$



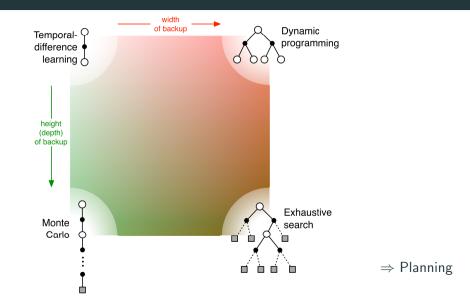
Action values increased by one-step Sarsa



Action values increased by 10-step Sarsa



Unified View



Reading

Required:

• RL book, Chapter 6 (6.1–6.2, 6.4–6.6) and Chapter 7 (7.1–7.3)

Optional (convergence proofs):

- For TD(0): Dayan, P. (1992). The convergence of TD(λ) for general λ. Machine Learning, 8(3):341–362
- For Sarsa: Singh, S., Jaakkola, T., Littman, M., Szepesvári, C. (2000). Convergence results for single-step on-policy reinforcement-learning algorithms. Machine Learning, 38(3):287–308
- For Q-learning: Watkins, C., Dayan, P. (1992). Q-learning. Machine Learning, 8(3-4):279–292