Reinforcement Learning

Planning and Learning

Michael Herrmann, David Abel Based on slides by Stefano V. Albrecht 14 February 2025

- *n*-step TD methods (cntd. from 4/2/25)
- Planning in reinforcement learning
- Dyna-Q
- Rollout planning
- Monte Carlo tree search
- Offline vs online planning

Unified View

Input: the policy π to be evaluated Algorithm parameter: step size $\alpha \in (0, 1]$ Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0Loop for each episode: Initialize SLoop for each step of episode: $A \leftarrow action$ given by π for S Take action A, observe R, S' $V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S) \right]$ $S \leftarrow S'$ until S is terminal

n-step TD Methods

TD(0) uses 1-step return:

$$G_{t:t+1} \doteq R_{t+1} + \gamma V_t(S_{t+1})$$

MC uses full return:

$$G_{t:\infty} \doteq \sum_{k=1}^{\infty} \gamma^{k-1} R_{t+k}$$

n-step TD Methods

TD(0) uses 1-step return:

$$G_{t:t+1} \doteq R_{t+1} + \gamma V_t(S_{t+1})$$

MC uses full return:

$$G_{t:\infty} \doteq \sum_{k=1}^{\infty} \gamma^{k-1} R_{t+k}$$

n-step return bridges TD(0) and MC:

$$G_{t:t+n} = \sum_{k=1}^{n} \gamma^{k-1} R_{t+k} + \gamma^{n} V_{t+n-1}(S_{t+n})$$

n-step return:

$$G_{t:t+n} = \sum_{k=1}^{n} \gamma^{k-1} R_{t+k} + \gamma^{n} V_{t+n-1}(S_{t+n})$$

n-step TD uses *n*-step return as target:

$$V_{t+n}(S_t) \doteq V_{t+n-1}(S_t) + \alpha \left[\mathbf{G}_{t:t+n} - V_{t+n-1}(S_t) \right]$$

n-step TD Methods in Random Walk Example (see slide 14 in RL_6)

On/Off-Policy Learning with n-Step Returns

Can similarly define *n*-step TD policy learning:

$$G_{t:t+n} = \sum_{k=1}^{n} \gamma^{k-1} R_{t+k} + \gamma^{n} Q_{t+n-1}(S_{t+n}, A_{t+n})$$

$$Q_{t+n}(S_t, A_t) \doteq Q_{t+n-1}(S_t, A_t) + \alpha \rho_{t+1:t+n} [G_{t:t+n} - Q_{t+n-1}(S_t, A_t)]$$

with importance ratio

$$\rho_{t:h} \doteq \prod_{k=t}^{\min(h,T-1)} \frac{\pi(A_k|S_k)}{\mu(A_k|S_k)}$$

Action values increased by one-step Sarsa

Action values increased by 10-step Sarsa

Unified View

Planning: any process which uses a model of the environment to compute a plan of action (policy) to achieve a specified goal

• Dynamic programming is planning: uses model p(s', r|s, a)

Model: anything the agent can use to predict how environment will respond to actions

Model: anything the agent can use to predict how environment will respond to actions

• Distribution model: description of all possibilities and their probabilities

p(s', r|s, a) for all s, a, s', r

Model: anything the agent can use to predict how environment will respond to actions

• Distribution model: description of all possibilities and their probabilities

p(s', r|s, a) for all s, a, s', r

• Simulation (sample) model: produces sample outcomes

 $(s', r) \sim \hat{p}(s, a)$ s.t. $\Pr{\{\hat{p}(s, a) = (s', r)\}} = p(s', r|s, a)$

Simulation model usually easier to specify than distribution model

Paths to a Policy: Model-Free RL

Paths to a Policy: Model-Based RL

Model-based RL

Initialize Q(s, a) and Model(s, a) for all $s \in S$ and $a \in \mathcal{A}(s)$ Do forever: (a) $S \leftarrow \text{current (nonterminal) state}$ (b) $A \leftarrow \varepsilon$ -greedy(S, Q)(c) Execute action A; observe resultant reward, R, and state, S'(d) $Q(S,A) \leftarrow Q(S,A) + \alpha [R + \gamma \max_{a} Q(S',a) - Q(S,A)]$ direct RL (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment) \leftarrow model learning (f) Repeat n times: $S \leftarrow$ random previously observed state $A \leftarrow$ random action previously taken in S $R, S' \leftarrow Model(S, A)$ $\underbrace{Q(S,A) \leftarrow Q(S,A)}_{Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_{a} Q(S',a) - Q(S,A)]}$

Dyna-Q in Maze Example

Greedy policy halfway through second episode:

When the Model is Wrong: Blocking Maze

When the Model is Wrong: Shortcut Maze

See Tutorial 6

Dyna-Q+ uses an exploration bonus heuristic:

- Keeps track of time since each state-action pair was tried in real environment
- Bonus reward is added for transitions caused by state-action pairs related to how long ago they were tried:

 $R+\kappa\sqrt{ au}$ time since last visiting the state-action pair

• Incentive to re-visit "old" state-action pairs

Dyna-Q uses model to reuse *past* experiences

Rollout planning:

- Use model to simulate ("rollout") future trajectories
- Each trajectory starts at current state S_t
- Find best action A_t for state S_t

Rollout Planning with Forward Updating

Rollout Q-planning with forward updating:

- 1: Given: simulation model Model
- 2: Initialise: Q(s, a) for all s, a
- 3: **for** *t* = 0, 1, 2, 3, ... **do**
- 4: $S_t \leftarrow \text{current state}$
- 5: **for** *n* rollouts **do**
- 6: $S \leftarrow S_t$
- 7: while S is non-terminal (or fixed-length rollouts) do
- 8: select action A based on $Q(S, \cdot)$ with some exploration $// e.g. \epsilon$ -greedy
- 9: $(R, S') \sim Model(S, A)$
- 10: Q-update: $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) Q(S,A)]$
- 11: $S \leftarrow S'$
- 12: select action A_t greedily from $Q(S_t, \cdot)$

If model is **correct** and under Q-learning conditions (all (s, a) infinitely visited and standard α -reduction), rollout planning learns *optimal policy*

If model is **correct** and under Q-learning conditions (all (s, a) infinitely visited and standard α -reduction), rollout planning learns *optimal policy*

If model is **incorrect**, learned policy likely sub-optimal on real task

• Can range from slightly sub-optimal to failing to solve real task (examples?)

If model is **correct** and under Q-learning conditions (all (s, a) infinitely visited and standard α -reduction), rollout planning learns *optimal policy*

If model is **incorrect**, learned policy likely sub-optimal on real task

• Can range from slightly sub-optimal to failing to solve real task (examples?)

Next: can we use rewards from rollouts more effectively?

 \Rightarrow Back-propagate rewards

Rollout Planning with Backward Updating (Back-Propagation)

Rollout Q-planning with backward updating:

- 1: Given: simulation model Model
- 2: Initialise: Q(s, a) for all s, a; LIFO stack $Trace = \{\}$
- 3: **for** *t* = 0, 1, 2, 3, ... **do**
- 4: $S_t \leftarrow \text{current state}$
- 5: **for** *n* rollouts **do**
- 6: $S \leftarrow S_t$
- 7: while S is non-terminal (or fixed-length rollouts) do // Rollout
- 8: select action A based on $Q(S, \cdot)$ with some exploration
- 9: $(R, S') \sim Model(S, A)$
- 10: push (S, A, R, S') to *Trace*
- 11: $S \leftarrow S'$
- 12: while *Trace* not empty do
- 13: pop (*S*, *A*, *R*, *S*') from *Trace*
- 14: $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_{a} Q(S',a) Q(S,A)]$
- 15: select action A_t greedily from $Q(S_t, \cdot)$

// Backprop

Rollout Planners in Maze Example

Monte Carlo Tree Search (MCTS):

- General, efficient rollout planning with backward updating
- Stores partial *Q* as tree and asymmetrically expands tree based on most promising actions

Q is recursive tree structure:

 $Q(s,a) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} Q(S_{t+1},a') | S_t = a, A_t = a]$

Phases of Monte Carlo Tree Search

Browne et al. (2012)

MCTS-Search(S_t):

- 1: Find node v_0 with $state(v_0) = S_t$ (or create new node)
- 2: while within computational budget do
- 3: $v_l \leftarrow TreePolicy(v_0)$
- 4: $\Delta \leftarrow DefaultPolicy(state(v_l))$
- 5: Backprop (v_l, Δ)
- 6: return $action(BestChild(v_0))$ // e.g. highest expected return; most visited child

- Tree policy can be any exploration policy
- Backprop works just as before

// Select node in tree and expand // Simulation steps

Upper Confidence Bounds for Trees

Upper Confidence Bounds for Trees (UCT):

- Popular MCTS variant easy to use and often effective
- Uses UCB action selection as tree policy, and $\alpha = 1/N(S, A)$

UCB recap: estimate upper bound on action value:

$$A \leftarrow \begin{cases} a, \text{ if } a \text{ never tried in } S \\ \arg \max_a Q(S, a) + c\sqrt{\log N(S)/N(S, a)} \end{cases}$$

- N(S) is number of times state S has been visited
- N(S, a) is number of times action a was selected in S

Simulation step gives estimate of return at state, e.g.:

Random-DefaultPolicy(S):

1: $G \leftarrow 0$

- 2: while S is non-terminal do
- 3: $A \leftarrow random action (uniformly)$
- 4: $(R, S') \sim Model(S, A)$
- 5: $G \leftarrow R + \gamma G$
- 6: $S \leftarrow S'$

7: **return** G

Possible improvements:

- Average over multiple simulations
- Use domain-specific heuristic to

 select better actions than
 random

evaluate state directly (e.g. in
 Chess we know that some states
 are better than others)

Imagine you are given an MDP for a chess game against a specific opponent

Offline planning:

- Use MDP to find best policy before the actual chess game takes place (offline)
- Use as much time as needed to find policy
- Policy is complete: gives optimal action for *all* possible states

Dyna-Q and dynamic programming are suitable for offline planning

Imagine you are given an MDP for a chess game against a specific opponent

Online planning:

- Use MDP to find best policy during the actual chess game (online)
- Limited compute time budget at each state (e.g. seconds/minutes in chess)
- Policy usually incomplete: gives optimal action for *current* state

Rollout planning (including MCTS) is suitable for online planning

Paths to a Policy: Model-Based RL

- Models can provide additional information and thus increase efficiency and robustness.
- Models can be costly to obtain, to run, and to keep updated.
- Model-free approaches appear more interesting as they are more challenging, in particular when model learning is included.
- Both model-free and model-based approaches can have biases.

Reading

Required:

• RL book, Chapter 8 (8.1–8.3, 8.10–8.11)

Optional:

- Browne et al. (2012). A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on Computational Intelligence and AI in Games, Vol. 4, No. 1
- UCT paper: L. Kocsis and C. Szepesvari (2006). Bandit based Monte-Carlo Planning. European Conference on Machine Learning
- T. Vodopivec, S. Samothrakis, B. Ster (2017). On Monte Carlo Tree Search and Reinforcement Learning. Journal of Artificial Intelligence Research, Vol. 60