
Reinforcement Learning

Planning and Learning

Michael Herrmann, David Abel

Based on slides by Stefano V. Albrecht

14 February 2025



Lecture Outline

• n-step TD methods (cntd. from 4/2/25)

• Planning in reinforcement learning

• Dyna-Q

• Rollout planning

• Monte Carlo tree search

• Offline vs online planning

1



Unified View

2

Planning:

Using a model



Reminder: TD control

3



n-step TD Methods

TD(0) uses 1-step return:

Gt:t+1
.

= Rt+1 + γVt(St+1)

MC uses full return:

Gt:∞
.

=
∞∑
k=1

γk−1Rt+k

n-step return bridges TD(0) and MC:

Gt:t+n =
n∑

k=1

γk−1Rt+k+γnVt+n−1(St+n)

4



n-step TD Methods

TD(0) uses 1-step return:

Gt:t+1
.

= Rt+1 + γVt(St+1)

MC uses full return:

Gt:∞
.

=
∞∑
k=1

γk−1Rt+k

n-step return bridges TD(0) and MC:

Gt:t+n =
n∑

k=1

γk−1Rt+k+γnVt+n−1(St+n)

4



n-step TD Methods

n-step return:

Gt:t+n =
n∑

k=1

γk−1Rt+k + γnVt+n−1(St+n)

n-step TD uses n-step return as target:

Vt+n(St)
.

= Vt+n−1(St) + α [Gt:t+n − Vt+n−1(St)]

5



n-step TD Methods in Random Walk Example (see slide 14 in RL 6)

6

(Larger problem than

shown in the top image)



On/Off-Policy Learning with n-Step Returns

Can similarly define n-step TD policy learning:

Gt:t+n =
n∑

k=1

γk−1Rt+k + γnQt+n−1(St+n,At+n)

Qt+n(St ,At)
.

= Qt+n−1(St ,At) + αρt+1:t+n [Gt:t+n − Qt+n−1(St ,At)]

with importance ratio

ρt:h
.

=

min(h,T−1)∏
k=t

π(Ak |Sk)

µ(Ak |Sk)

7



n-step TD Control in a Gridworld

8



Unified View

2

Planning:
Using a model



Planning

Planning: any process which uses a model of the environment to compute a plan of
action (policy) to achieve a specified goal

• Dynamic programming is planning: uses model p(s′, r|s,a)

3



Model

Model: anything the agent can use to predict how environment will respond to
actions

• Distribution model: description of all possibilities and their probabilities

p(s′, r|s,a) for all s,a, s′, r

• Simulation (sample) model: produces sample outcomes

(s′, r) ∼ p̂(s,a) s.t. Pr
{
p̂(s,a) = (s′, r)

}
= p(s′, r|s,a)

Simulation model usually easier to specify than distribution model

4



Model

Model: anything the agent can use to predict how environment will respond to
actions

• Distribution model: description of all possibilities and their probabilities

p(s′, r|s,a) for all s,a, s′, r

• Simulation (sample) model: produces sample outcomes

(s′, r) ∼ p̂(s,a) s.t. Pr
{
p̂(s,a) = (s′, r)

}
= p(s′, r|s,a)

Simulation model usually easier to specify than distribution model

4



Model

Model: anything the agent can use to predict how environment will respond to
actions

• Distribution model: description of all possibilities and their probabilities

p(s′, r|s,a) for all s,a, s′, r

• Simulation (sample) model: produces sample outcomes

(s′, r) ∼ p̂(s,a) s.t. Pr
{
p̂(s,a) = (s′, r)

}
= p(s′, r|s,a)

Simulation model usually easier to specify than distribution model

4



Paths to a Policy: Model-Free RL

5

Model-free RL



Paths to a Policy: Model-Based RL

6

Model-based RL



Dyna-Q: Integrating Planning, Learning, Acting

7



Dyna-Q in Maze Example

8

γ = 0.95
ϵ = 0.1
α = 0.1



Dyna-Q in Maze Example

Greedy policy halfway through second episode:

9



When the Model is Wrong: Blocking Maze

10



When the Model is Wrong: Shortcut Maze

11



Dyna-Q+

Dyna-Q+ uses an exploration bonus heuristic:

• Keeps track of time since each state-action pair was tried in real environment

• Bonus reward is added for transitions caused by state-action pairs related to how
long ago they were tried:

• Incentive to re-visit “old” state-action pairs

12

See Tutorial 6



Rollout Planning

Dyna-Q uses model to reuse past experiences

Rollout planning:

• Use model to simulate (“rollout”) future trajectories
• Each trajectory starts at current state St
• Find best action At for state St

13



Rollout Planning with Forward Updating

Rollout Q-planning with forward updating:
1: Given: simulation model Model
2: Initialise: Q(s,a) for all s,a
3: for t = 0, 1, 2, 3, ... do
4: St ← current state
5: for n rollouts do
6: S← St
7: while S is non-terminal (or fixed-length rollouts) do
8: select action A based on Q(S, ·) with some exploration // e.g. ϵ-greedy
9: (R, S′) ∼ Model(S,A)
10: Q-update: Q(S,A)← Q(S,A) + α[R+ γmaxa Q(S′,a)− Q(S,A)]
11: S← S′

12: select action At greedily from Q(St, ·) 14



Rollout Planning Optimality

If model is correct and under Q-learning conditions (all (s,a) infinitely visited and
standard α-reduction), rollout planning learns optimal policy

If model is incorrect, learned policy likely sub-optimal on real task

• Can range from slightly sub-optimal to failing to solve real task (examples?)

Next: can we use rewards from rollouts more effectively?
⇒ Back-propagate rewards

15



Rollout Planning Optimality

If model is correct and under Q-learning conditions (all (s,a) infinitely visited and
standard α-reduction), rollout planning learns optimal policy

If model is incorrect, learned policy likely sub-optimal on real task

• Can range from slightly sub-optimal to failing to solve real task (examples?)

Next: can we use rewards from rollouts more effectively?
⇒ Back-propagate rewards

15



Rollout Planning Optimality

If model is correct and under Q-learning conditions (all (s,a) infinitely visited and
standard α-reduction), rollout planning learns optimal policy

If model is incorrect, learned policy likely sub-optimal on real task

• Can range from slightly sub-optimal to failing to solve real task (examples?)

Next: can we use rewards from rollouts more effectively?
⇒ Back-propagate rewards

15



Rollout Planning with Backward Updating (Back-Propagation)

Rollout Q-planning with backward updating:
1: Given: simulation model Model
2: Initialise: Q(s,a) for all s,a; LIFO stack Trace = {}
3: for t = 0, 1, 2, 3, ... do
4: St ← current state
5: for n rollouts do
6: S← St
7: while S is non-terminal (or fixed-length rollouts) do
8: select action A based on Q(S, ·) with some exploration
9: (R, S′) ∼ Model(S,A)
10: push (S,A,R, S′) to Trace
11: S← S′
12: while Trace not empty do
13: pop (S,A,R, S′) from Trace
14: Q(S,A)← Q(S,A) + α[R+ γmaxa Q(S′,a)− Q(S,A)]
15: select action At greedily from Q(St, ·) 16

// Rollout

// Backprop



Rollout Planners in Maze Example

17

γ = 0.95
ϵ = 0.1
α = 0.1



Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS):

• General, efficient rollout planning with backward updating
• Stores partial Q as tree and asymmetrically expands tree based on most
promising actions

Q is recursive tree structure:

Q(s,a) = E[Rt+1 + γmaxa′ Q(St+1,a′) | St = a,At = a]

18



Phases of Monte Carlo Tree Search

Browne et al. (2012)
19



General MCTS Method

MCTS-Search(St):
1: Find node v0 with state(v0) = St (or create new node)
2: while within computational budget do
3: vl ← TreePolicy(v0) // Select node in tree and expand
4: ∆← DefaultPolicy(state(vl)) // Simulation steps
5: Backprop(vl,∆)

6: return action(BestChild(v0)) // e.g. highest expected return; most visited child

• Tree policy can be any exploration policy
• Backprop works just as before

20



Upper Confidence Bounds for Trees

Upper Confidence Bounds for Trees (UCT):
• Popular MCTS variant — easy to use and often effective
• Uses UCB action selection as tree policy, and α = 1/N(S,A)

UCB recap: estimate upper bound on action value:

A←
{
a, if a never tried in S
argmaxa Q(S,a) + c

√
logN(S)/N(S,a)

• N(S) is number of times state S has been visited
• N(S,a) is number of times action a was selected in S

21



Simulation Step

Simulation step gives estimate of return at state, e.g.:

Random-DefaultPolicy(S):
1: G← 0
2: while S is non-terminal do
3: A← random action (uniformly)
4: (R, S′) ∼ Model(S,A)
5: G← R+ γG
6: S← S′

7: return G

22

Possible improvements:

• Average over multiple simulations
• Use domain-specific heuristic to
– select better actions than
random
– evaluate state directly (e.g. in
Chess we know that some states
are better than others)



Offline Planning

Imagine you are given an MDP for a chess game against a specific opponent

Offline planning:
• Use MDP to find best policy before the
actual chess game takes place (offline)

• Use as much time as needed to find
policy

• Policy is complete: gives optimal action
for all possible states

Dyna-Q and dynamic programming are
suitable for offline planning

23



Online Planning

Imagine you are given an MDP for a chess game against a specific opponent

Online planning:
• Use MDP to find best policy during the
actual chess game (online)

• Limited compute time budget at each
state (e.g. seconds/minutes in chess)

• Policy usually incomplete: gives
optimal action for current state

Rollout planning (including MCTS) is
suitable for online planning

24



Paths to a Policy: Model-Based RL

25



Discussion: Model-based vs. model-free RL

• Models can provide additional information and thus increase efficiency and robustness.

• Models can be costly to obtain, to run, and to keep updated.

• Model-free approaches appear more interesting as they are more challenging, in

particular when model learning is included.

• Both model-free and model-based approaches can have biases.

9



Reading

Required:

• RL book, Chapter 8 (8.1–8.3, 8.10–8.11)

Optional:

• Browne et al. (2012). A Survey of Monte Carlo Tree Search Methods. IEEE
Transactions on Computational Intelligence and AI in Games, Vol. 4, No. 1

• UCT paper: L. Kocsis and C. Szepesvari (2006). Bandit based Monte-Carlo Planning.
European Conference on Machine Learning

• T. Vodopivec, S. Samothrakis, B. Ster (2017). On Monte Carlo Tree Search and
Reinforcement Learning. Journal of Artificial Intelligence Research, Vol. 60

26


