Reinforcement Learning

Value Function Approximation

Michael Herrmann, David Abel
Based on slides by Stefano V. Albrecht

25 February 2025

THE UNIVERSITY of EDINBURGH

y: informatics




Lecture Outline

Curse of dimensionality and generalisation

Value function approximation

Stochastic gradient descent

Linear value functions and feature construction

Semi-gradient TD control



Curse of Dimensionality

Theory so far has assumed:
e Unlimited space: can store value function as table

e Unlimited data: many (infinite) visits to all state-action pairs

In practice these assumptions are usually violated, because...

Curse of Dimensionality: 5 e
. °, Eﬁ
e Number of states grows exponentially f K%
with number of state variables - >
e |f state described by k variables with
values in {1,..., n}, then O(n*) states ¢ »
Go: 10170 states Hydrogen atoms: 10%°

2



Compact Value Functions and Generalisation

Two problems...



Compact Value Functions and Generalisation

Two problems...

Not enough memory to store value function as table

e Tabular methods require storage proportional to |S| for v(s) or |S||.A] for q(s, a)

e Need compact representation of value function

(But sometimes can be enough to store only partial value function; e.g. MCTYS)



Compact Value Functions and Generalisation

Two problems...

Not enough memory to store value function as table

e Tabular methods require storage proportional to |S| for v(s) or |S||.A] for q(s, a)

e Need compact representation of value function

(But sometimes can be enough to store only partial value function; e.g. MCTYS)
No data (or not enough data) to estimate return in each state
e Many states may never be visited

e Need to generalise observations to unknown state-action pairs



Generalisation (Example)

Blue circle must move to red goal
e Agent uses optimal policy (shortest path)

Suppose we have return estimates (steps to
go) for locations S1-56
® eg. v(55) = -3, v(54) = —6,

v(S2) = —31

We have no data for locations S7 and S8 (not
visited yet)
e Can we estimate v(S7) and v(58) based on

other return estimates?




Value Function Approximation

Replace tabular value function with parameterised function:

A

U(s,w) ~ vi(s)

4(s,a,w) = ga(s,a)
w € RY is parameter (“weight”) vector

e.g. linear function, neural network, regression tree, ...

e Compact: number of parameters d much smaller than |S|

e Generalises: changing one parameter value may change value estimate of many
states/actions



Supervised Learning

Learning a value function is a form of supervised learning:

Input-Output

Minimise error/loss
examples

. . . Parameters
in approximation

Examples are pairs of states and return estimates, (S;, U;), e.g
e MC: Ut == Gt

o TD(0): U = Rit1+ v0(Sei1,wr)

o n-step TD: Ur = Rep1+ -+ 7" 'Regn + 7" U(Stn, Wegn—1)



Supervised Learning

Desired properties in supervised learning method:

¢ |ncremental updates

update w using only partial data, e.g. most recent (S, U;) or batch



Supervised Learning

Desired properties in supervised learning method:

¢ |ncremental updates
update w using only partial data, e.g. most recent (S, U;) or batch

e Ability to handle noisy targets
e.g. different MC updates G; for same state S;



Supervised Learning

Desired properties in supervised learning method:

¢ |ncremental updates

update w using only partial data, e.g. most recent (S, U;) or batch

e Ability to handle noisy targets
e.g. different MC updates G; for same state S;

e Ability to handle non-stationary targets
e.g. changing target policy, bootstrapping

= If ¥ or § differentiable, stochastic gradient descent is a suitable approach



Gradient Descent

e Let J(w) be differentiable function of w

R s
e Gradient of J(w) is :_—:::%/ 77///4’//
:_:’_l/”/ - -
" o /// g
9J(w) 0J(w)\ ' —
= e Ny ,f/ S
VJ(w) ( w7 owg — // Jrf
_,////
* To find local minimum of J(w), adjust w in /’//" f
negative direction of gradient / jf’ b5 //’(
: |
1 'r L\_‘_‘—‘——_\_\_\_
Wil = We — 5 OéVJ(Wt) / ('l /// [
I
| /1]

® (v is step-size parameter

convergence requires standard a-reduction



Example: Gradient Bandit Algorithm

e Can we select actions without computing estimates of g.? See Lecture 2

Gradient-based policy optimisation:

e Use differentiable policy m¢(alf) with E/i:;f’gj 2,/57/:7
parameter vector 6 € RY E’,’/}///////%// //
=
me(ald) = Pr{Ar=a| 0, =6} — 7 Jﬁf
e v |
e Use gradient ascent on policy parameters to . / / 0.5 ,/
maximise expected reward / Iff J ///
] —
Oerr = 0c + a Vo, E[R] J/ / / /r/[
| |




Gradient Bandit Algorithm with Softmax

e Represent m; with softmax distribution: See Lecture 2

40

th(a)

30

20

H:(a) are preference values (parameters)

Preference

e Update policy parameters:

OE[R]

Hit11(a) = He(a) + « 9H: (2)

-30

A B C D

= He(a) + a(Re — Re)([a = Aclr — e(a)) Actions

with baseline Ry =13 | R-= Ry_1+1(R: — Ri_1) which reduces variance in updates
10



Gradient Bandit Algorithm

See Lecture 2

100% r
80% . W'W~"M
I . . 5 1
v x{,..w with baseline Re=1>.R:
a=04
% 60% |
Optimal a=01_ e
action  40% / fﬁ,r,w*’”""w without baseline R, =0
‘( N
20% f’/ /
4
Baseline reduces
0% t, . . . , . .
1 750 500 750 looo Variance in updates

Steps

11



Summary: Comparing Gradient Bandits with other Bandit Algorithms

See Lecture 2

UCB greedy with
optimistic
initialization

a=0.1

Average ;|

reward :
. gradient
over first 1l bandit
1000 steps

1.1p

1/128 1/64 1/32  1/16  1/8 1/4 172 1 2 4

e a c Qo

12



Stochastic Gradient Descent (back to general case)

Objective: find parameter vector w by minimising mean-squared error between
approximate value V(s,w) and true value v.(s)

J(w) = Eﬁ[(vﬁ(s) — O(s,w))ﬂ

13



Stochastic Gradient Descent

Objective: find parameter vector w by minimising mean-squared error between
approximate value V(s,w) and true value v.(s)

J(w) = Eﬁ[(vﬁ(s) — O(s,w))ﬂ

e Gradient descent finds local minimum:

1
Wit = We = 5 aVJ(wy)

=w; + aEx[(vr(s) — V(s,wt)) VI(s, we)]

14



Stochastic Gradient Descent

Objective: find parameter vector w by minimising mean-squared error between
approximate value V(s,w) and true value v.(s)

J(wW) = Ex [(va(s) — (s, w))?]
e Gradient descent finds local minimum:
Wil = Wy — %aVJ(wt)
=w; + aEx[(vr(s) — V(s,wt)) VI(s, we)]
e Stochastic gradient descent samples the gradient:

Wiyl = W + « [(JlL — O(St, Wt)] V\/}(St, Wt)

14



Stochastic Gradient Descent — Convergence

Stochastic gradient descent samples the gradient:

Wer1 = Wi + a[Ur — U(S, we)] VV(St, we) (1)

15



Stochastic Gradient Descent — Convergence

Stochastic gradient descent samples the gradient:

Wer1 = Wi + a[Ur — U(S, we)] VV(St, we) (1)

e w; will converge to local optimum under standard a-reduction and if U; is unbiased
estimate Ex[Ut|St] = vz (5t)

= MC update is unbiased, but TD update is biased (why?)

15



Stochastic Gradient Descent — Convergence

Stochastic gradient descent samples the gradient:

Wer1 = Wi + a[Ur — U(S, we)] VV(St, we) (1)

e w; will converge to local optimum under standard a-reduction and if U; is unbiased
estimate Ex[Ut|St] = vz (5t)

= MC update is unbiased, but TD update is biased (why?)

e Note: (1) is not a true TD gradient because U; also depends on w
Ut = Rev1 +70(St11,w)

Hence, we call it semi-gradient TD

15



Semi-gradient TD(0) for Policy Evaluation

Input: the policy 7 to be evaluated

Input: a differentiable function ¥ : §* x R? — R such that (terminal,-) = 0
Algorithm parameter: step size a > 0

Initialize value-function weights w € R arbitrarily (e.g., w = 0)

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A ~ 7(:|5)
Take action A, observe R, S’
W W+ a[R+70(S",w) — 0(S,w)| Vo (S,w)
S5

until S is terminal

16



Linear Value Function Approximation

. . . . See Tutorial 5
Linear value function approximation:

d
U(s,w) = w'x(s) = zw;x,-(s)
i=1

o x(s) = (x1(s), ..., xq(s)) " is feature vector of state s

owy ’ 0wy

. p T
e Simple gradient: Vi(s,w) = (dWTX dWTX> = x(s)

e Gradient update: Wy = Wy + a[Ur — V(S we)] x(S¢)

17



Linear Value Function Approximation

. . . . See Tutorial 5
Linear value function approximation:

d
U(s,w) = w'x(s) = ZW,'X,’(S)
i=1

o x(s) = (x1(s), ..., xq(s)) " is feature vector of state s

ow " x ow ' x T

e Simple gradient: Vi(s,w) = <8w1 s B ) = x(s)

e Gradient update: Wy = Wy + a[Ur — V(S we)] x(S¢)

In linear case, there is only one optimum!
= MC gradient updates converge to global optimum

= TD gradient updates converge near global optimum (TD fixed point)
17



Feature Vectors

18



State Aggregation
Exact representation:
X(s) = ( x-pos(s) )

Generalise with :
e Partition states into disjoint sets Sy, So, ...
with indicator functions x,(s) = [s € Sk]1

in-S1(s) 1

x(s)=1 in-S2(s) | =10
in-S3(s) 0




State Aggregation

Exact representation:

Generalise with :
e Partition states into disjoint sets Sy, So, ...
with indicator functions xx(s) = [s € Sk]1

Special case: every state s has its own set
Ss = {s}
=




Coarse/Tile Coding

State aggregation generalises only within sets &1, So, ...

e Allow generalisation across sets by allowing Sy to overlap

® e.g. coarse coding and tile coding

< —Tilingl —
Tiling 2 -

—_— |

Tiling 3 |

|

Tiling 4

NERRY

Continuous
2D state

pac

state space |
to be L
represented

1

i
Point in | Tl _:__..

]

I

[}

}____
{1

20



Example: Random Walk

e States: numbered 1 to 1000, start at state 500
e Policy: randomly jump to one of 100 states to left, or one of 100 states to right
e If jump goes beyond 1/1000, terminates with reward —1/+1

e State aggregation: 10 groups of 100 states each

trajectory of 11 jumps

: a
N\ /
2 NaVA [ /N
\ / \ // /K \ [ \\ /
VN AN o
- A A I e
—] ] ()
\ N—— ) 7 — Vi
| group 1 group 2 group 3 group 4 group5 | group 6 \9}'0up7 \g‘réﬂpa group 9 group10’,"
| ‘
\ |
state 1 state 500 state 1000

21



Random Walk: MC and TD Prediction

Linear gradient MC: Linear gradient TD:
1 True 0.0187 1 True
value U 7 value U =
s L
) [ s . Approximate =~
Value | Approximate Distribution ™o 0
0 - = value U~ [7
scale MC value v ~ scale
>
} d _
P 0.0017
-1 0 N 1000
! State 1000 State

After 100,000 episodes with oz = 2 x 107°

22



Approximate Control in Episodic Tasks

e Estimate state-action values: §(s,a,w) ~ gx(s, a)

e For linear approx., features defined over states and action:

4(s,a,w) gw,x,sa

e Stochastic gradient descent:

Wi = Wi + a[Us — §(St, Ar,We)] VG(St, At wi)

23



Approximate Control in Episodic Tasks

e Estimate state-action values: §(s,a,w) ~ gx(s, a)

e For linear approx., features defined over states and action:

4(s,a,w) gw,x,sa

e Stochastic gradient descent:

Wi = Wi + a[Us — §(St, Ar,We)] VG(St, At wi)

e.g. Sarsa: Ur = Rey1+7G(Se41, At1, We)
Q-learning: U; = Ri11 + v maxs §(Se+1, a, we)
Expected Sarsa: U: = Riy1 +7v),7(alSt+1) G(Se+1, a, We)

23



Episodic Semi-gradient Sarsa

Input: a differentiable action-value function parameterization ¢ : 8§ x A x R* — R
Algorithm parameters: step size o > 0, small € > 0
Initialize value-function weights w € R¢ arbitrarily (e.g., w = 0)

Loop for each episode:
S, A + initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S’ is terminal:
w < w+a[R— (S, A w)|Vi(Ss, A w)
Go to next episode
Choose A’ as a function of ¢(5’, -, w) (e.g., e-greedy)
W W+ a[R +vq(S’, A’ w) — (S, A,W)}V(j(S, A, w)
S+ S
A+ A

24



Example: Mountain Car with Linear Semi-Gradient Sarsa

Goal STATES:
car's position and velocity

ACTIONS:
three thrusts: forward, reverse, none

REWARDS:

J Gravity always —1 until car reaches the goal

Episodic, No Discounting, y=1

Semi-gradient Sarsa with linear approximation over 8 8x8 tilings
e =0 (optimistic initial values §(s, a,w) = 0)

25



Learned Action Values in Mountain Car

Goal

MOUNTAIN CAR
Step 428

SRR
RALETAN
SRR

LRI
AT

5
58

SN
SR

>
%,
%%

555

%

25

23

7

2
%
e e
e

=
=

25
.~

=

AN
)

o5
25
Z2

v
2

Z=

K
s
532
=

>

=
==

o

o
2

Cost-to-go:
—max, §(s, a,w)

R
RO
AN

i

Episode 104

054

:
ol

7

D
N
AR

—a
o

7

Ao

5

sy,
1
v

Z
2
s

27
o
%
aek
2

N
O
R
LR
SRS
LAl
e

2%
ot
22
w0stn;

77
77
e
%
o)

=
L2/
%
2
252
oS
2
S
=

%
77
7%
S

v
oS
3

17
s
7
22
7
2%
2%

5
=
==

N

2

2

>
=
=

27
>
e

=7

L
2
Sioes
7
<2
aavary
=
<77
retea

25

A
o
R

Jo
s
252
oy
oot
252
22
222

26

A

7%
7
Z

£
o
%
s
2
e
'z;"

P
2
2

&
2
=2
%
25

&
2

%

&7

%
(2%
22

&




Learning Curves in Mountain Car

Mountain Car
Steps per episode
log scale
averaged over 100 runs

1000

400

200

100

0 5(|)0
Episode

27



Convergence to Global Optimum in Episodic Control

Algorithm Tabular Linear Non-linear
MC control yes chatter* no
(semi-gradient) n-step Sarsa yes chatter* no
(semi-gradient) n-step Q-learning yes no no

*Chatters near optimal solution because optimal policy may not be representable under value
function approximation

28



Deadly Triad

Risk of divergence arises when the following three are combined:

1. Function approximation
2. Bootstrapping
3. Off-policy learning

Possible fixes:
e Use importance sampling to warp off-policy distribution into on-policy distribution

e Use gradient TD methods which follow true gradient of projected Bellman error (see
book, p. 266)

29



Required (RL book):

e Chapter 9 (9.1-9.5)
(Box “Proof of Convergence of Linear TD(0)" in Sec 9.4 is not examined)

e Chapter 10 (10.1)
e Chapter 11 (11.1)

Optional:
e Remaining sections of chapters

e Tsitsiklis, J. N., Van Roy, B. (1997). An analysis of temporal-difference learning with
function approximation. |IEEE Transactions on Automatic Control, 42(5):674-690

e Mahadevan, S. (1996). Average reward reinforcement learning: Foundations,

algorithms, and empirical results. Machine Learning, 22(1):159-196 20



