
Reinforcement Learning

Value Function Approximation

Michael Herrmann, David Abel

Based on slides by Stefano V. Albrecht

25 February 2025

Lecture Outline

• Curse of dimensionality and generalisation

• Value function approximation

• Stochastic gradient descent

• Linear value functions and feature construction

• Semi-gradient TD control

1

Curse of Dimensionality

Theory so far has assumed:

• Unlimited space: can store value function as table

• Unlimited data: many (infinite) visits to all state-action pairs

In practice these assumptions are usually violated, because...

Curse of Dimensionality:

• Number of states grows exponentially

with number of state variables

• If state described by k variables with

values in {1, ..., n}, then O(nk) states

2

>

Go: 10170 states Hydrogen atoms: 1080

Compact Value Functions and Generalisation

Two problems...

Not enough memory to store value function as table

• Tabular methods require storage proportional to |S| for v(s) or |S||A| for q(s, a)

• Need compact representation of value function

(But sometimes can be enough to store only partial value function; e.g. MCTS)

No data (or not enough data) to estimate return in each state

• Many states may never be visited

• Need to generalise observations to unknown state-action pairs

3

Compact Value Functions and Generalisation

Two problems...

Not enough memory to store value function as table

• Tabular methods require storage proportional to |S| for v(s) or |S||A| for q(s, a)

• Need compact representation of value function

(But sometimes can be enough to store only partial value function; e.g. MCTS)

No data (or not enough data) to estimate return in each state

• Many states may never be visited

• Need to generalise observations to unknown state-action pairs

3

Compact Value Functions and Generalisation

Two problems...

Not enough memory to store value function as table

• Tabular methods require storage proportional to |S| for v(s) or |S||A| for q(s, a)

• Need compact representation of value function

(But sometimes can be enough to store only partial value function; e.g. MCTS)

No data (or not enough data) to estimate return in each state

• Many states may never be visited

• Need to generalise observations to unknown state-action pairs

3

Generalisation (Example)

Blue circle must move to red goal

• Agent uses optimal policy (shortest path)

Suppose we have return estimates (steps to

go) for locations S1–S6

• e.g. v(S5) = −3, v(S4) = −6,

v(S2) = −31

We have no data for locations S7 and S8 (not

visited yet)

• Can we estimate v(S7) and v(S8) based on

other return estimates?

4

Value Function Approximation

Replace tabular value function with parameterised function:

v̂(s,w) ≈ vπ(s)

q̂(s, a,w) ≈ qπ(s, a)

w ∈ Rd is parameter (“weight”) vector

e.g. linear function, neural network, regression tree, ...

• Compact: number of parameters d much smaller than |S|
• Generalises: changing one parameter value may change value estimate of many

states/actions

5

Supervised Learning

Learning a value function is a form of supervised learning:

Examples are pairs of states and return estimates, (St ,Ut), e.g.

• MC: Ut = Gt

• TD(0): Ut = Rt+1 + γv̂(St+1,wt)

• n-step TD: Ut = Rt+1 + · · ·+ γn−1Rt+n + γn v̂(St+n,wt+n−1)

6

Supervised Learning

Desired properties in supervised learning method:

• Incremental updates

update w using only partial data, e.g. most recent (St ,Ut) or batch

• Ability to handle noisy targets

e.g. different MC updates Gt for same state St

• Ability to handle non-stationary targets

e.g. changing target policy, bootstrapping

⇒ If v̂ or q̂ differentiable, stochastic gradient descent is a suitable approach

7

Supervised Learning

Desired properties in supervised learning method:

• Incremental updates

update w using only partial data, e.g. most recent (St ,Ut) or batch

• Ability to handle noisy targets

e.g. different MC updates Gt for same state St

• Ability to handle non-stationary targets

e.g. changing target policy, bootstrapping

⇒ If v̂ or q̂ differentiable, stochastic gradient descent is a suitable approach

7

Supervised Learning

Desired properties in supervised learning method:

• Incremental updates

update w using only partial data, e.g. most recent (St ,Ut) or batch

• Ability to handle noisy targets

e.g. different MC updates Gt for same state St

• Ability to handle non-stationary targets

e.g. changing target policy, bootstrapping

⇒ If v̂ or q̂ differentiable, stochastic gradient descent is a suitable approach

7

Gradient Descent

• Let J(w) be differentiable function of w

• Gradient of J(w) is

∇J(w) =

(
∂J(w)

∂w1
, · · · , ∂J(w)

∂wd

)>

• To find local minimum of J(w), adjust w in

negative direction of gradient

wt+1 = wt −
1

2
α∇J(wt)

• α is step-size parameter

convergence requires standard α-reduction

8

Example: Gradient Bandit Algorithm

• Can we select actions without computing estimates of q∗?

Gradient-based policy optimisation:

• Use differentiable policy πt(a|θ) with

parameter vector θ ∈ Rd

πt(a|θ) = Pr{At = a | θt = θ}

• Use gradient ascent on policy parameters to

maximise expected reward

θt+1 = θt + α∇θtE[Rt]

9

See Lecture 2

Gradient Bandit Algorithm with Softmax

• Represent πt with softmax distribution:

πt(a) =
eHt(a)

∑
b e

Ht(b)

Ht(a) are preference values (parameters)

• Update policy parameters:

Ht+1(a) = Ht(a) + α
∂E[Rt]

∂Ht(a)

= Ht(a) + α(Rt − R̄t)([a = At]1 − πt(a))

with baseline R̄t = 1
t

∑t
τ=1 Rτ = R̄t−1+ 1

t

(
Rt − R̄t−1

)
which reduces variance in updates

10

See Lecture 2

Gradient Bandit Algorithm

11

%
Optimal
action

Steps

α = 0.1

100%

80%

60%

40%

20%

0%

α = 0.4

α = 0.1

α = 0.4

without baseline

with baseline

1 250 500 750 1000

R̄t = 1
t

∑
τ Rτ

R̄t = 0

Baseline reduces

variance in updates

See Lecture 2

Summary: Comparing Gradient Bandits with other Bandit Algorithms

12

See Lecture 2

Stochastic Gradient Descent (back to general case)

Objective: find parameter vector w by minimising mean-squared error between

approximate value v̂(s,w) and true value vπ(s)

J(w) = Eπ
[
(vπ(s)− v̂(s,w))2

]

13

Stochastic Gradient Descent

Objective: find parameter vector w by minimising mean-squared error between

approximate value v̂(s,w) and true value vπ(s)

J(w) = Eπ
[
(vπ(s)− v̂(s,w))2

]

• Gradient descent finds local minimum:

wt+1 = wt −
1

2
α∇J(wt)

= wt + αEπ[(vπ(s)− v̂(s,wt))∇v̂(s,wt)]

• Stochastic gradient descent samples the gradient:

wt+1 = wt + α [Ut − v̂(St ,wt)] ∇v̂(St ,wt)

14

Stochastic Gradient Descent

Objective: find parameter vector w by minimising mean-squared error between

approximate value v̂(s,w) and true value vπ(s)

J(w) = Eπ
[
(vπ(s)− v̂(s,w))2

]

• Gradient descent finds local minimum:

wt+1 = wt −
1

2
α∇J(wt)

= wt + αEπ[(vπ(s)− v̂(s,wt))∇v̂(s,wt)]

• Stochastic gradient descent samples the gradient:

wt+1 = wt + α [Ut − v̂(St ,wt)] ∇v̂(St ,wt)

14

Stochastic Gradient Descent — Convergence

Stochastic gradient descent samples the gradient:

wt+1 = wt + α [Ut − v̂(St ,wt)] ∇v̂(St ,wt) (1)

• wt will converge to local optimum under standard α-reduction and if Ut is unbiased

estimate Eπ[Ut |St] = vπ(St)

⇒ MC update is unbiased, but TD update is biased (why?)

• Note: (1) is not a true TD gradient because Ut also depends on w

Ut = Rt+1 + γv̂(St+1,w)

Hence, we call it semi-gradient TD

15

Stochastic Gradient Descent — Convergence

Stochastic gradient descent samples the gradient:

wt+1 = wt + α [Ut − v̂(St ,wt)] ∇v̂(St ,wt) (1)

• wt will converge to local optimum under standard α-reduction and if Ut is unbiased

estimate Eπ[Ut |St] = vπ(St)

⇒ MC update is unbiased, but TD update is biased (why?)

• Note: (1) is not a true TD gradient because Ut also depends on w

Ut = Rt+1 + γv̂(St+1,w)

Hence, we call it semi-gradient TD

15

Stochastic Gradient Descent — Convergence

Stochastic gradient descent samples the gradient:

wt+1 = wt + α [Ut − v̂(St ,wt)] ∇v̂(St ,wt) (1)

• wt will converge to local optimum under standard α-reduction and if Ut is unbiased

estimate Eπ[Ut |St] = vπ(St)

⇒ MC update is unbiased, but TD update is biased (why?)

• Note: (1) is not a true TD gradient because Ut also depends on w

Ut = Rt+1 + γv̂(St+1,w)

Hence, we call it semi-gradient TD

15

Semi-gradient TD(0) for Policy Evaluation

16

Linear Value Function Approximation

Linear value function approximation:

v̂(s,w)
.

= w>x(s) =
d∑

i=1

wi xi (s)

• x(s) = (x1(s), ..., xd(s))> is feature vector of state s

• Simple gradient: ∇v̂(s,w) =
(
∂w>x
∂w1

, · · · , ∂w>x
∂wd

)>
= x(s)

• Gradient update: wt+1 = wt + α [Ut − v̂(St ,wt)] x(St)

In linear case, there is only one optimum!

⇒ MC gradient updates converge to global optimum

⇒ TD gradient updates converge near global optimum (TD fixed point)

17

See Tutorial 5

Linear Value Function Approximation

Linear value function approximation:

v̂(s,w)
.

= w>x(s) =
d∑

i=1

wi xi (s)

• x(s) = (x1(s), ..., xd(s))> is feature vector of state s

• Simple gradient: ∇v̂(s,w) =
(
∂w>x
∂w1

, · · · , ∂w>x
∂wd

)>
= x(s)

• Gradient update: wt+1 = wt + α [Ut − v̂(St ,wt)] x(St)

In linear case, there is only one optimum!

⇒ MC gradient updates converge to global optimum

⇒ TD gradient updates converge near global optimum (TD fixed point)

17

See Tutorial 5

Feature Vectors

18

x(s) =

(
x-pos(s)

y-pos(s)

)

x(s) =




θ(s)

θ-vel(s)

x-pos(s)
...




Remember:

State must be Markov

State Aggregation

Exact representation:

x(s) =

(
x-pos(s)

y-pos(s)

)

Generalise with state aggregation:

• Partition states into disjoint sets S1, S2, ...

with indicator functions xk(s) = [s ∈ Sk]1

x(s) =




in-S1(s)

in-S2(s)

in-S3(s)


 =




1

0

0




19

State Aggregation

Exact representation:

x(s) =

(
x-pos(s)

y-pos(s)

)

Generalise with state aggregation:

• Partition states into disjoint sets S1, S2, ...

with indicator functions xk(s) = [s ∈ Sk]1

Special case: every state s has its own set

Ss = {s}
⇒ Same as tabular representation!

19

Coarse/Tile Coding

State aggregation generalises only within sets S1, S2, ...
• Allow generalisation across sets by allowing Sk to overlap

• e.g. coarse coding and tile coding

20

Example: Random Walk

• States: numbered 1 to 1000, start at state 500

• Policy: randomly jump to one of 100 states to left, or one of 100 states to right

• If jump goes beyond 1/1000, terminates with reward −1/+1

• State aggregation: 10 groups of 100 states each

21

Random Walk: MC and TD Prediction

Linear gradient MC: Linear gradient TD:

After 100,000 episodes with α = 2× 10−5

22

Approximate Control in Episodic Tasks

• Estimate state-action values: q̂(s, a,w) ≈ qπ(s, a)

• For linear approx., features defined over states and action:

q̂(s, a,w)
.

=
d∑

i=1

wi xi (s, a)

• Stochastic gradient descent:

wt+1 = wt + α [Ut − q̂(St ,At ,wt)] ∇q̂(St ,At ,wt)

e.g. Sarsa: Ut = Rt+1 + γ q̂(St+1,At+1,wt)

Q-learning: Ut = Rt+1 + γmaxa q̂(St+1, a,wt)

Expected Sarsa: Ut = Rt+1 + γ
∑

a π(a|St+1) q̂(St+1, a,wt)

23

Approximate Control in Episodic Tasks

• Estimate state-action values: q̂(s, a,w) ≈ qπ(s, a)

• For linear approx., features defined over states and action:

q̂(s, a,w)
.

=
d∑

i=1

wi xi (s, a)

• Stochastic gradient descent:

wt+1 = wt + α [Ut − q̂(St ,At ,wt)] ∇q̂(St ,At ,wt)

e.g. Sarsa: Ut = Rt+1 + γ q̂(St+1,At+1,wt)

Q-learning: Ut = Rt+1 + γmaxa q̂(St+1, a,wt)

Expected Sarsa: Ut = Rt+1 + γ
∑

a π(a|St+1) q̂(St+1, a,wt)

23

Episodic Semi-gradient Sarsa

24

Example: Mountain Car with Linear Semi-Gradient Sarsa

STATES:

Semi-gradient Sarsa with linear approximation over 8 8x8 tilings

ε = 0 (optimistic initial values q̂(s, a,w) = 0)

25

Learned Action Values in Mountain Car

Values learned while solving Mountain-Car  
with tile coding function approximation

10.1. EPISODIC SEMI-GRADIENT CONTROL 235

!1.2

Position

0.6

Step 428

Goal

Position

4

0

!
.0
7

.0
7

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

Position

Position

Position

0

27

0

120

0

104

0

46

Episode 12

Episode 104 Episode 1000 Episode 9000

MOUNTAIN CAR

Figure 10.1: The mountain–car task (upper left panel) and the cost-to-go function
(�maxa q̂(s, a,✓)) learned during one run.

applying full throttle the car can build up enough inertia to carry it up the steep
slope even though it is slowing down the whole way. This is a simple example of a
continuous control task where things have to get worse in a sense (farther from the
goal) before they can get better. Many control methodologies have great di�culties
with tasks of this kind unless explicitly aided by a human designer.

The reward in this problem is �1 on all time steps until the car moves past its goal
position at the top of the mountain, which ends the episode. There are three possible
actions: full throttle forward (+1), full throttle reverse (�1), and zero throttle (0).
The car moves according to a simplified physics. Its position, xt, and velocity, ẋt,
are updated by

xt+1
.
= bound

⇥
xt + ẋt+1

⇤

ẋt+1
.
= bound

⇥
ẋt + 0.001At � 0.0025 cos(3xt)

⇤
,

where the bound operation enforces �1.2  xt+1  0.5 and �0.07  ẋt+1  0.07.
In addition, when xt+1 reached the left bound, ẋt+1 was reset to zero. When it
reached the right bound, the goal was reached and the episode was terminated.
Each episode started from a random position xt 2 [�0.6,�0.4) and zero velocity. To
convert the two continuous state variables to binary features, we used grid-tilings
as in Figure 9.9. We used 8 tilings, with each tile covering 1/8th of the bounded
distance in each dimension, and asymmetrical o↵sets as described in Section 9.5.4.1

1In particular, we used the tile-coding software, available on the web, version 3 (Python), with
iht=IHT(2048) and tiles(iht, 8, [8*x/(0.5+1.2), 8*xdot/(0.07+0.07)], A) to get the indices
of the ones in the feature vector for state (x, xdot) and action A.

!1.2

Position

0.6

Step 428

Goal

Position

4

0

!
.0
7

.0
7

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

Position

Position

Position

0

27

0

120

0

104

0

46

Episode 12

Episode 104 Episode 1000 Episode 9000

MOUNTAIN CAR Goal

Demo
26

Cost-to-go:

−maxa q̂(s, a,w)

Learning Curves in Mountain Car

27

Convergence to Global Optimum in Episodic Control

Algorithm Tabular Linear Non-linear

MC control yes chatter∗ no

(semi-gradient) n-step Sarsa yes chatter∗ no

(semi-gradient) n-step Q-learning yes no no

∗Chatters near optimal solution because optimal policy may not be representable under value

function approximation

28

Deadly Triad

Risk of divergence arises when the following three are combined:

1. Function approximation

2. Bootstrapping

3. Off-policy learning

Possible fixes:

• Use importance sampling to warp off-policy distribution into on-policy distribution

• Use gradient TD methods which follow true gradient of projected Bellman error (see

book, p. 266)

29

Reading

Required (RL book):

• Chapter 9 (9.1–9.5)

(Box “Proof of Convergence of Linear TD(0)” in Sec 9.4 is not examined)

• Chapter 10 (10.1)

• Chapter 11 (11.1)

Optional:

• Remaining sections of chapters

• Tsitsiklis, J. N., Van Roy, B. (1997). An analysis of temporal-difference learning with

function approximation. IEEE Transactions on Automatic Control, 42(5):674–690

• Mahadevan, S. (1996). Average reward reinforcement learning: Foundations,

algorithms, and empirical results. Machine Learning, 22(1):159–196
30

