
Reinforcement Learning Tutorial 6, Week 7

—

Reward Shaping and Gradient Monte Carlo

Pavlos Andreadis∗

March 2025

Overview: The following tutorial questions relate to material taught in weeks
3 and 5 of the current Reinforcement Learning course. They aim at encourag-
ing engagement with the course material and facilitating a deeper understand-
ing.

This week’s tutorial continues with the problem from Tutorial 4 and asks us to
consider the use of reward shaping. This is of course a toy problem in which
reward shaping would not have anything to offer if we only ran our procedures a
bit more. To simulate situations from more complicated MDPs where training
might indeed be too slow (or not converging at all; see value function approxi-
mation), we are assuming procedures that have stopped prematurely. The effect
of reward shaping in our toy problem below is analogous to that of applying it
in a more complex problem, especially as concerns the problems, or sacrifices
if you prefer, inherent in reward shaping. What is less demonstrable here are
the benefits of the approach in helping converge to reasonable solutions where
otherwise it might not be practically feasible.

Having hopefully received a better understanding of reward shaping, we move
on to an exercise on value function approximation and specifically on Gradient
Monte Carlo. There is something odd with the samples handed to us here, but
you can still compute an updated estimate of your action-value function. We
will continue on this problem in the next tutorial.

Problem 1 - Discussion: Reward Shaping

Assume the problem as described in Problem 1 of Tutorial 4, but where af-
ter evaluating a deterministic policy π2 (as given in Table 1 below) (e.g. using
TD(0)), we have the following estimation of the state-value function:

∗with special thanks to Ross McKenzie for providing a first version of Problem 2

1



(s6,→, v = 0) (s7,→, v = 0) (s8)
(s4, ↓, v = 6) (s5, ↑, v = 10)
(s1,→, v = 7) (s2,→, v = 8) (s3, ↑, v = 9)

Table 1: Suboptimal policy.

We are frustrated that our agent has not learnt to “go up” when in state s4,
and decide to, instead of running the process further, apply reward shaping to
the model, adding +2 reward to the state visits for states s6, s7, hoping that
this will help the agent learn to take the shortest route from s4.

1. What do you think would be the optimal policy for this modified MDP
(with rewards for arriving at states s6 and s7 of +1)? Would the episodes
terminate?

2. If instead of +2 to the above rewards, we instead add +1 (rewards for
arriving at states s6 and s7 of 0), what would be the optimal policy?

3. In the above two models, would the calculated state-value function, after
convergence, be representative of the original problem? Why?

4. When can reward shaping be a useful tool, and how?

Figure 1: “An AI-controlled orchard.”

Problem 2 - Gradient Monte Carlo

An AI controlled orchard needs to decide when to harvest its trees. To do this it
measures the concentration of three chemicals in the air. Each day the orchard

2



can choose to wait or harvest. Waiting costs one credit in operating costs while
a harvest ends the process. Once a crop is harvested, packaged and sold, the
orchard is told the profit or loss of that harvest. Most experts agree that the
function mapping the chemical concentrations to the profit is approximately
linear.

The orchard has several samples of the profits from other harvests. as seen in
Table 2 below.

Concentration of A
(ppm)

Concentration of B
(ppm)

Concentration of C
(ppm)

Profit/Reward
(credits)

4 7 1 3
10 6 0 -15
20 1 15 5
4 19 3 21

Table 2: Samples of harvest profits

Begin to approximate the function that maps the state feature vector to Q(state,
harvest) using a Monte Carlo target, doing a gradient decent step on each sample
(using linear function approximation). Solutions will be provided for a learning
rate of 0.01 and initial weights of w0 = [w0

a, w
0
b , w

0
c ] = [3, 2, 1], but feel free to

try any values.

Do you expect our Q(state, harvest) function to have converged?

3


