
Reinforcement Learning Tutorial 7, Week 8

— with solutions —

Reward expectation, Prioritisation, and

Hyperparameters∗

Pavlos Andreadis, Michael Herrmann

March 2025

Problem 1 – R-learning

R-learning1 is similar to Q-learning, in particular for non-discounted, non-
episodic problems. It is based on the average reward ρ = limn→∞

1
n

∑n
t=1E [rt],

and considers the current rewards in comparison to this accumulating reward
average towards the value:

V (st) =

∞∑
k=1

E [rt+k − ρ|st = s]

Q (st, at) =

∞∑
k=1

E [rt+k − ρ|st = s, at = a]

In this relative value function (relative to the average), ρ is slowly adapted as
a measure of success. In this way a different concept of optimality is implied
in particular for non-episodic tasks. As an algorithm, R-learning works as fol-
lows

1. Initialise ρ and Q (s, a)

2. Observe st and choose at (e.g. ε-greedy), execute at

3. Observe rt+1 and st+1

4. Update

Qt+1(st, at)=(1− η)Qt(st, at) + η
(
rt+1 − ρt + max

a
Qt(st+1, a)

)
5. If Q (st, at) = maxaQ (st, a) then

ρt+1 =(1−α) ρt + α
(
rt+1+max

a
Qt(st+1, a)−max

a
Qt+1(st, a)

)
∗with special thanks to Adam Jelley
1A. Schwartz (1993) A reinforcement learning method for maximizing undiscounted rewards.

10th ICML. (You don’t need to know R-learning for the exam.)

1



Figure 1: An illustrative example for R-learning (Schwartz, ibid.).

[We would choose η � α, because, otherwise, for r = 0, Q-value may cease to
change and the agent may get trapped in a suboptimal limit cycle.]

Compare R-learning and Q-learning in the following simple example, where
only one decision needs to be taken: The agent moves either to nearby printer
(“o.k.”) or to distant mail room (“good”).

Is it possible that R learning finds the optimal solution quicker than Q-learning?
How does the result for Q-learning depend on the discount factor γ?

Answer The problem is quite similar to a two-armed bandit, but waiting times
differ for the “arms”: Q-learning with low γ favours the nearby goal, while its
learning times get longer for larger γ, see Fig. 2. R-learning identifies the better
choice quickly based on trajectory based reward averages. Note that results
may depend on parameters.

Figure 2: R-learning (Schwartz, ibid.) can solve certain problems much more
quickly than for example Q-learning. Also note that Q-learning does prefer the
shorter branch for small γ, while it has longer learning times for γ close to 1
(Schwartz, ibid.).

2



Problem 2 – Prioritised sweeping2

While Dyna3 agents select state-action pairs uniformly at random from the
previously experienced pairs, it might be more efficient to use a non-uniform
probability distribution. Why? Which state-action pairs should be preferred?
Discuss the role of goal states in this context.

Answer

Once having bee successful in a maze task (see Fig. 3), during the next episode,
only state–action pairs that are are part of the trajectory towards the goal has a
positive value, while all other values are still zero, so there is no need to update
the corresponding states. In a more general sense, however, the idea is that
“relevance” is not only about goals but about all changes (i.e. new information)
in the reward/value structure.

Figure 3: A simple maze task (Sutton and Barto, 2020, Fig. 8.3)

Although it may seem that goal states are critical, we should be reminded that
not all problems have goals states. In fact, any state where information enters
is interesting, i.e. rather than work backwards from goal states only, we should
consider any state where a change of value has occurred.

This is an iterative procedure which can sweep through the recent trajectories,
where different streams of information may simply be added up.

If not real trajectories are used, but a planner produces the respective preceding,
then the backwards frontier can grow exponentially, so that other criteria can
be used to limit the computational effort, such as the size of the updater.

Also Example 8.4 in Sutton & Barto (2020) shows, that prioritised sweeping
does not avoid the exponential complexity of the search problem in a maze, but
can achieve for example an order of magnitude of improvement.

[Is there any downside to this?]

2Sutton & Barto, Sect. 8.4
3The Dyna-Q algorithm is one example of Dyna, see Lecture 7, Slides 7ff

3



Problem 2 - Discussion

Part a

Considering a Reinforcement Learning algorithm in general, what is the overall
effect of increasing the learning rate? What happens when you set it too high?
What happens when you set it too low?

Answer:

The learning rate η is usually not critical for simple deterministic problems,
and relatively large values are often useful to reduce the time to convergence.
However, if the initial TD-type errors are large compared to the relevant range of
values, then it may be necessary to limit the learning rate from the beginning.
If the rewards (or actions) are stochastic, then it is necessary to reduce the
learning rate according to the Robbins-Monro conditions (see lecture 2, slide 12),
although in practice a quicker decay of the learning rate is usually preferable,
i.e. the learning rate may need to be decreased so that it reaches zero in finite
time. See also momentum techniques (for example Sarigül and Avci [2018]).
Also note that for RL methods based on function approximation, the Robbins-
Monro conditions are not sufficient for convergence.

Difficulties can arise, when several learning rates (or the learning rate and the
exploration rate) interact, e.g. if a sliding average with its own learning rate
enters the updates, if a training algorithm is used to approximate the policy
or value function etc. In this cases, some consideration of the relative “speed”
of the respective learning processes as well as some experimentation may be
necessary.

Part b

Is the discount factor γ:

1. Part of the definition of a Markov Decision Process? That is, a part of
the definition of the problem to be solved; or

2. Is it external to the problem? That is, a hyperparameter for training the
model.

When a discount factor is close to 1, we end up with a long horizon problem.
That is, we plan for long-term gains. Assume we were training a Reinforcement
Learning agent for a long-horizon problem. Could you think of a reason for
which a method using short-horizon targets (cut-off at some horizon h) might
outperform a method using long-term horizon targets on this problem? To
aid in answering, consider searching online for “planning horizon reinforcement
learning model accuracy” and look for related work.

4



Answer:

The answer is, arguably, both. The discount factor is occasionally included in
the tuple defining Markov Decision Processes (MDP) Silver [accessed 2020], but
is also frequently omitted and is not present in the original definition Bellman
[1957]. That being said, the discount factor determines the relative importance
of rewards, based on how close in time they are received. This affects what the
optimal policy for the problem would be. If we then were to adopt the view
that the discount factor is not part of the definition of an MDP, then an MDP
would not in-and-of-itself completely define our control problem (we would not
have fully defined our cost function).

There is work indicating that we can control the discount factor during training
in a way that would improve the learnt policy, in terms of performance when
deployed Jiang et al. [2015]. Specifically, this work defines a new “evaluation”
discount factor γeval, which is smaller than the discount factor we have defined
for our problem γ). This is then used to train a policy for a long horizon problem
(as defined by γ) using short horizon samples (as defined by γeval). This means
that the discount factor is used here as a training hyperparameter to trade off
bias and variance (see also e.g. Schulman et al. [2015]). In particular, the
authors show that you can see increasing the discount factor (and therefore
the effective horizon) as increasing the complexity of the learnt model. And as
you will recall from Machine Learning, we need to match the complexity of our
model to the task at hand.

Part c

What other parameters are relevant in Reinforcement Learning, and what con-
siderations would help to determine their values?

Answer:

Different algorithms have different parameters, so, if you read or hear about
a new algorithm, try to get an idea whether their particular parameters are
sensitive, need online adjustment, or depend strongly on the problem. In other
words, own experience in using an algorithm is useful. Here, we restrict ourselves
to the following parameters:

• The exploration rate ε has been discussed in the context of MAB and
many of the features observed there, carry over also the general case,
although this parameter needs to be checked in any particular case and to
be adapted in many cases.

• Resolution parameters determine how many discretisation steps are made
available for the description of the state of a problem. Likewise, dimension-
ing parameters decide the complexity of function approximation methods,
e.g. the number of neuron is a network or the number of samples. Given

5



the problem complexity, these parameters are determined by the required
efficiency of the algorithm and the available resources.

• Initialisation values can include any prior knowledge on the problem, but
should otherwise not introduce an unwanted bias. E.g., optimistic initial-
isation, if done in a suitable way, introduces a bias towards exploration
that is often desirable. In other cases, small random initial values are a
good choice.

• The number of time steps should be large enough to reach a certain quality
of a solution, i.e., so that given the exploration rate, the learning rate(s)
and the complexity of the problem the solution can actually be found. It
is often helpful to make a rough calculation to get an idea how long you’ll
have to wait for a solution or whether you should reconsider the choice of
the parameters.

References
Richard Bellman. A markovian decision process. Journal of Mathematics and

Mechanics, 6(5):679–684, 1957. ISSN 00959057, 19435274. URL http://www.

jstor.org/stable/24900506.

Nan Jiang, Alex Kulesza, Satinder Singh, and Richard Lewis. The dependence
of effective planning horizon on model accuracy. In Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’15, page 1181–1189, Richland, SC, 2015. International Foundation
for Autonomous Agents and Multiagent Systems. ISBN 9781450334136.

Mehmet Sarigül and Mutlu Avci. Performance comparison of different momen-
tum techniques on deep reinforcement learning. Journal of Information and
Telecommunication, 2(2):205–216, 2018.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. High-dimensional continuous control using generalized advantage
estimation. arXiv preprint arXiv:1506.02438, 2015.

David Silver. Applications of reinforcement learning in real world. https:

//www.davidsilver.uk/wp-content/uploads/2020/03/MDP.pdf, accessed
2020.

6

http://www.jstor.org/stable/24900506
http://www.jstor.org/stable/24900506
https://www.davidsilver.uk/wp-content/uploads/2020/03/MDP.pdf
https://www.davidsilver.uk/wp-content/uploads/2020/03/MDP.pdf

