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What is a simulation?

Simulations are usually computer-based, using software models
to provide support for decision makers and for training
purposes. The purpose of the simulation is the imitation of the
operation of processes in a real systems using a model of this
system.

A model represents the key behaviours and characteristics of
selected processes in a system
The simulation represents how the model evolves under
different conditions over time.

Simulation systems include
discrete event simulation,
process simulation, and
dynamic simulation,

or a combination of all three across different subsystems.

adapted from https://www.twi-global.com/technical-knowledge/faqs/faq-what-is-simulation
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States

A state St describes a system at a particular time t.
It contains all the available information needed to make solve a
given optimisation or prediction task
Example: a sequence 1, 2, 3, 4, 5, 6, ... that increases by +1
in every time step.

Given S1 = 1, what is S11?
Given S1 = 1, what is S11?
Given S1 = 1, what is S11?

Example: St+1 is usually the same as St ∈ {0, 1}, but at
:::::
about

::::::
every

::::
10th

:::::
step, St+1 = 1− St .

Example: St+1 = λSt (1− St) with S1 ∈ [0, 1] and λ ∈ [0, 4].
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Dynamical systems

Let x ∈ S, a state space, and ti in a set I of time points. For a
given function

Φ : I × S → S ,

a dynamical system is characterised by the two properties

Identity
Φ(0, x) = x and 0 ∈ I

Semigroup property, i.e. if t2 + t1 ∈ I

Φ(t2,Φ(t1, x)) = Φ(t2 + t1, x)

⇒ The trajectory of the dynamical system:

γx ≡ {Φ (t, x) : t ∈ I}

Note: X and I can be discrete or continuous.
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Example: Exponential growth

For S = (0,∞), I = {0, 1, 2, . . . } = N0, consider the dynamical
system:

St+1 = aSt ,

where a > 0 is a constant growth factor. Given S0, we find

St = atS0

For a shifted versions of the sequence S̃0 = St1 , we see

S̃t2 = at2 S̃0 = at2at1S0 = at2+t1S0 = St2+t1 .

Asymptotic behaviour

lim
t→∞

St =


0 a < 1
S0 a = 1
∞ a > 1
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Example: Exponential growth

Explicit system

St = atS0

Asymptotic behaviour

lim
t→∞

St =


0 a < 1
S0 a = 1
∞ a > 1

Next time, we’ll consider this example again, but in continuous time

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Example: Exponential growth in 2D
S = (0,∞)2, I = {0, 1, 2, . . . }, consider the dynamical system:(

S1
t+1

S2
t+1

)
=

(
m11 m12
m21 m22

)(
S1
t

S2
t

)
= M

(
S1
t

S2
t

)
= M St ,

where a > 0 is a constant growth factor. Given S0 we find

St = MtS0

If the sequence is shifted S̃0 = St1then

S̃t2 = Mt2 S̃0 = Mt2Mt1S0 = Mt2+t1S0 = St2+t1 .

Asymptotic behaviour depends on the eigenvalues λi of M.

M =
2∑

i=1

λiξ
iξi> =

2∑
i=1

λi

(
ξi1ξ

i
1 ξi1ξ

i
2

ξi2ξ
i
1 ξi2ξ

i
2

)
, assuming λi ∈ R

if λ1 > λ2 and λ1 > 1, divergence in the direction of eigenvector ξi
(obviously, also a number of other cases is possible here).
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Markov chains

Stochastic process described by
state probabilities and
state-transition probabilities

P(St+1 =xjt+1 |St =xjt ,St−1 =xjt−1 , . . . )=P(St+1 =xjt+1 |St =xjt )
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Example: Weather Forecasting (see Li & Nakano, Ch. 2)

Weather forecasting over one hour, i.e. I = {0, 1, 2, . . . }, given
current state St ∈{sunny, cloudy, rainy}:

St =sunny St =cloudy St =rainy

St+1 =sunny 1
2

1
3

2
3

St+1 =cloudy 1
3

1
3

1
6

St+1 =rainy 1
6

1
3

1
6

Columns sum to 1.
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Example: Weather Forecasting (see Li & Nakano, Ch. 2)

Markov property: Future depends on immediate past only.

If all we know about the state of the system is “St = sunny”, then
in 1

3 of the cases, the weather will turn to “cloudy” in the next hour.

P(sunny→ cloudy) = P(St+1 = cloudy|St = sunny) =
1
3 P(St+1 = sunny)

P(St+1 = cloudy)
P(St+1 = rainy)

=

 1
2

1
3

2
3

1
3

1
3

1
6

1
6

1
3

1
6

 P(St = sunny)
P(St = cloudy)
P(St = rainy)


 1

2
1
3
1
6

=

 P(St+1 = sunny)
P(St+1 = cloudy)
P(St+1 = rainy)

=

 1
2

1
3

2
3

1
3

1
3

1
6

1
6

1
3

1
6

P(St = sunny) = 1
0
0
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Numerical Example: Weather Forecasting (Li & Nakano, Ch. 2)

See Notebook.
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Perron Frobenius theorem

Theorem: The maximal eigenvalue of a matrix with positive
entries is unique and has an eigenvector with positive entries.

If the matrix columns sum to 1, then this eigenvalue equals 1, and
the respective eigenvector represents the stationary probabilities.

P i
t =

∑
j

MijP
j
t

Normalisation is conerved. If M is a stochastic matrix
∑

i Mij = 1:

∑
i

P i
t+1 =

∑
i

∑
j

MijP
j
t =

∑
j

(∑
i

Mij

)
︸ ︷︷ ︸

=1

P j
t =

∑
j

P j
t

i.e. if
∑

j P
j
t = 1 then

∑
j P

j
t+1 = 1.
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Discussion

For non-negative probability matrices, more assumptions are
needed to show that M has a stationary distribution.
Although more information should be available if the system
runs over several time steps, Markov chains tend to reproduce
only the average case for a system.
Non-Markovianity is usually due to partial observability.
If we are interested in the temporal variability, the stochastic
matrix does not need to be the same in every step, but can be
modulated by observations (see: Hidden Markov Models).

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Monte Carlo method

Buffon’s needle problem (1733): Draw parallel lines with
distance d , throw a needle of length `, then the probability of
an intersection is p = 2`

πd , i.e. we can determine π by counting
intersections.
First discussed by Enrico Fermi (later analog “Electronic
Numerical Integrator And Computer” was called
FERMIAC,1947)
The Monte Carlo method was developed to simulate nuclear
reactions (Stanislaw Ulam, 1944)
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Monte Carlo method

Task is to calculate the expected value of a function f

EX [f (X )] =
∑
all x

P(x) f (x),

If X is a high-dimensional random vector, this task may
require exponentially many values.
If eventually all the values “collapse” into an average, it may
be sufficient to take samples of f based on some random x .
Monte-Carlo methods become more reliable with methods to
reduce variance and with suitable samplers.
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Numerical Example: Monte Carlo (Li & Nakano, Ch. 1)

See Notebook.
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Stratified sampling

Stratified sampling (e.g. social strata in social science studies)
Stratification should be collectively exhaustive and mutually
exclusive
A representative (or balanced) sample represents the strata
proportionally
For strata of same size Nh variance reduces by (Nh/N)2.
Potential problems: Sample should be large enough it represent
all strata. Variance of properties can vary across strata.
Trends may revert when combining strata (Simpson’s paradox)
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Importance sampling

Variance can be reduced by sampling from the native
distribution p (X ) but be a more convenient distribution
w (Y ).
Importance sampling re-weights the w -sample to provide
information with respect to the original p distribution. Thus,

E [X ] =
∑
x∈Ω

xp(x) =
∑
x∈Ω

xp(x)

w(x)
w(x) = E

[
Yp(Y )

w(Y )

]
E.g. w can be a uniform distribution (“simple sampling”)

ÊX [f (X )] =

∑
y∈S p(y) f (y)∑

y∈S p(y)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Metropolis algorithm

New sample at y = x + ρq, where ρ is the search radius and q
is a random vector of ±1.
The new point y is accepted if it is better than the previous
point, or, if not, then only with a probability pA = exp

(
−∆E

kT

)
,

where k is a constant, T is an adaptable temperature
parameter, and ∆E is the loss in quality.
The quality E is e.g. the relative number of errors or is implied
by the physics of the problem.

Metropolis-Hastings: pA = min

(
1,

p(x | y)w(y)

p(y | x)w(x)

)
works for

an arbitrary sampling distribution w (see importance sampling,
slide 19).
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Markov-Chain-Monte-Carlo (MCMC)

Construct a Markov chain that with a given stationary
distribution
It is still a problem to find out how long it takes to reach this
stationary distribution.
Samples have usually a high auto-correlation (i.e. are similar),
which can lead to a reduction of the variance, but also to a
bias (underestimation) of the error of the target quantity (see
slide 16)
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Conclusion

Systems can be understood by making use of known facts or
by exemplary simulation.
The Markov property, independence assumptions, reachability,
sufficiently large sample size and others need to be critically
checked each in each case.
None of the points made here is as such important for this
course, but we may later need some of them again. Then
please check back here.
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Next topics

Quantitative description of continuous systems
Linear systems
Stochastic systems
Iterated functions
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