
Simulation, Analysis, and Validation of
Computational Models

— Linear Systems —

Lecturer: Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177



Overview

Linear systems
Examples
ODE
Outlook

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Last time: Exponential growth/decay in discrete time

For S = (0,∞), I = {0, 1, 2, . . . } = N0, consider the dynamical
system:

St+1 = aSt ,

where a > 0 is a constant growth factor. Given S0, we find∗

St = atS0

If the sequence is shifted S̃0 = St1then

S̃t2 = at2 S̃0 = at2at1S0 = at2+t1S0 = St2+t1 .

Asymptotic behaviour

lim
t→∞

St =


0 a < 1
S0 a = 1
∞ a > 1

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Exponential growth/decay in continuous time

For S = (0,∞), I = [0,∞) = R+
0 , consider the dynamical system:

St+1 = aSt (1)

In a continuous system only small steps can be made, so consider

St+1 − St = aSt − St ,

St+∆t − St
∆t

= aSt − St , for ∆t = 1

Choice of the time unit is arbitrary, so it can as well be small:

St+∆t − St
∆t

= aSt − St , for ∆t > 0

Two steps (not much has changed from the discrete case):

1 Calculate change: ∆St = (a− 1) St , where ∆St = St+∆t−St
∆t

2 Update: St+∆t = St + ∆St , and increment time by ∆t

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Exponential growth in continuous time
Is it feasible to consider arbitrary short times, i.e. ∆t → 0?

lim
∆t→0

St+∆t − St
∆t

=
dSt
dt

= (a− 1)St ,

We will now write c instead of a− 1, and x (t) instead of St . Does
the equation (A dot over a variable denotes the time derivative.)

dx (t)

dt
= cx (t) or ẋ (t) = cx (t) (2)

describe exponential growth? To check, we can simulate (later) or
calculate analytically (see below).

What is the meaning of ẋ (t) = cx (t)?

Causal: Temporal change depends on the function value.
Epistemic: Given x (0), Eq. 2 characterises a function x (t).
Mathematical: Find function x (t), given x (0) and Eq. 2.
Algorithmic: Find a good approximation of x (t).

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Exponential growth in continuous time (analytical)
Solving the equation ẋ (t) = cx (t) analytically:

dx (t)

dt
= cx (t)

or, if1 x (t) 6= 0,
1

x (t)

dx (t)

dt
= c

Integrate both sides∫ t1

t0

1
x (t)

dx (t)

dt
dt =

∫ t1

t0

c dt

Substitute x = x (t) where dx = dx(t)
dt dt (“cancel the dt”) with

x0 = x (t0) and x1 = x (t1)∫ x1

x0

1
x
dx =

∫ t1

t0

c dt

1Assumption to be checked later.
SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Exponential growth in continuous time (analytical)
Solve the integrals ∫ x1

x0

1
x
dx =

∫ t1

t0

cdt

log (x1)− log (x0) = c (t1 − t0)

log

(
x1

x0

)
= c (t1 − t0)

x1 = x0 exp (c (t1 − t0))

For t0 = 0, t1 = t, and x1 = x (t), we find the solution:

x (t) = x0 exp (c t) (3)

lim
t→∞

x (t) =


0 c < 0
x0 c = 0
∞ c > 0

Properties of the exponential function imply semigroup property, see last lecture
SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Exponential growth in continuous time: Remarks

Discrete (1) and continuous (2) systems appear similar, however

Comparing x0 exp (ct) = x0 (exp c)t and S0a
t , we find

a = exp (c),
c = a− 1 is a good approximation only for c ≈ 0, a ≈ 1,
i.e. the size of the time step does not matter, if not much
happens within a time step (what “happens” depends on the
time step with which we have tampered, see slide 5).
c can below −1, while a > 0 , in all these cases the solution
does not cross 0 from either side (see assumption above).
If we start with x (0) = 0 or with S0 = 0, nothing will happen.
Similar to continuous compounding of interest
Was the transition to the continuous case worth the effort,
when we will consider simulated systems anyway?

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Linear Dynamics in 2D for continuous time
x = (−∞,∞)2, I = [0,∞) = R+

0 , consider the dynamical system:(
ẋ1 (t)
ẋ2 (t)

)
= B

(
x1 (t)
x2 (t)

)
=

(
b11 b12
b21 b22

)(
x1 (t)
x2 (t)

)
, (4)

where B is a constant matrix. Given x (0) = (x1 (0) , x2 (1))>, we are
going to solve (4). In case b12 = b21 = 0, this is easy (see above).

Idea: Find rotation matrix R> to rotate B into diagonal form D →
easy solution of decoupled system → rotate back.

ẋ = Bx

R>ẋ︸︷︷︸
ẏ

= R>BR︸ ︷︷ ︸
D

R>x︸︷︷︸
y

where R is an orthogonal (rotation) matrix, RR> = 1 (unit
matrix). The matrix R will be obtained from the eigenvectors of B .

Eigen-decomposition: Assume we can find 2D vectors ρi , i ∈ {1, 2}
with λiρi = Bρi for some λi , then B =

∑2
i=1 λi ρiρ

>
i .

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Linear Dynamics in 2D for continuous time

The columns of R = (ρ1, ρ2) are eigenvectors of B =
∑2

i=1 λiρiρ
>
i :

R>BR = (ρ1, ρ2)>
2∑

i=1

λiρiρ
>
i (ρ1, ρ2)

= (ρ1, ρ2)>λ1ρ1ρ
>
1 (ρ1, ρ2) + (ρ1, ρ2)>λ2ρ2ρ

>
2 (ρ1, ρ2)

= λ1(ρ1, 0)>ρ1ρ
>
1 (ρ1, 0) + λ2(0, ρ2)>ρ2ρ

>
2 (0, ρ2)

= λ1

(
ρ>1 ρ1ρ

>
1 ρ1 0

0 0

)
+ λ2

(
0 0
0 ρ>2 ρ2ρ

>
2 ρ2

)
=

(
λ1 0
0 λ2

)
because eigenvectors are normalised ρ>1 ρ1 = 1, ρ>2 ρ2 = 1, and
orthogonal ρ>1 ρ2 = ρ>2 ρ1 = 0.

For this reason, also R is orthogonal, and it is easy to show that
R> = R−1, so it doesn’t matter whether we use R>BR or R−1BR .

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Linear Dynamics in 2D for continuous time

Putting things back together: Get solution of

ẏ =

(
λ1 0
0 λ2

)
y

simply by stacking solutions of Eq. 3 (above):(
y1 (t)
y2 (t)

)
=

(
y1 (0) exp (λ1 t)
y2 (0) exp (λ2 t)

)
where y = R>x , i.e. x = R y .

We transform the given initial conditions x (0) to y (0) = R>x (0),
and obtain the solution:(

x1 (t)
x2 (t)

)
= R

(
y1 (0) exp (λ1 t)
y2 (0) exp (λ2 t)

)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Linear Dynamics in 2D for continuous time: Remarks

Works in an analogous way also for higher dimensions
What if λi are complex? Use Euler formula for k = 1, 2:

yk (t) = (uk (0)± ivk (0)) exp ((zk ± iwk) t)

= (uk (0)± ivk (0)) yk (0) exp ((z) t) (coswt ± i sinwt) ,

“±” because for real matrices the non-real eigenvalues are pairs.
Eigenvector are then also complex, and thus also initial conditions.

What if the matrix B is not diagonalisable, i.e. BB> 6= B>B?
Next slide shows asymptotic behaviours for almost all different
cases.Phase plot:x space and vector of changes ẋ (small arrow).

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh





Stability and control

The system is stable, if all real parts of eigenvalues are
negative.
The system is unstable, if one eigenvalue has positive real part.
Non-zero imaginary parts in any eigenvalues lead to
oscillations or rotational effects.
Control theory aims at moving or placing eigenvalues to the
negative side (and to reduce oscillations).

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Is this really all?
No.

Dynamical variables can occur in non-linear functions.
In quasi-linear cases, parameter matrix can change over time
(including number of relevant eigenvalues).
Derivatives w.r.t. different quantities (partial differential
equations)
Noise can affect state measurements or even perturb the
parameters.
Delays before a state measurement causes a change of state
(control!) or there can be various delays.
Non-standard solutions are possible (sliding mode).

Yes (almost).

A simulation can appear realistic, if dynamic matrix changes in
a suitable way (and collisions are treated separately).

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



How to make things move?

Newton’s 2nd law F = m ẍ (force = change of momentum)
To control the dynamics, add forces!

aẍ (t) + b ẋ (t) + c x (t) = F (t)

Practically, the coefficients a, b, c need to have the correct
units, as the equation is all about acceleration [length/time2].
Higher-order time derivatives in linear systems can be treated
like multi-dimensional linear (first-order) systems.

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Example: Free fall in a gravitational field

Gravitational acceleration g =9.81m
s2

towards -x2, no air resistance

ẍ (t) =

(
0
−g

)
Integrate twice:

ẋ (t) =

(
c1

−gt + c2

)

x (t) =

(
c1t + d1

−gt2 + c2t + d2

)
To determine the integration constants, assume x (0) =

(
0
0

)
,

v (0) = ẋ (0) =

(
v0
v0

)
⇒ c1 = c2 = v0 and d1 = d2 = 0

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Example: Upright pendulum (higher-order system)

Movement determined by impulse, friction,
potential energy, torque [ignoring the details]:

I θ̈ + k θ̇ + Lmg sin θ = τ

Known are current state θ̇(t), θ(t) and input τ ,

θ̈ = −k

I
θ̇ − Lmg

I
sin θ +

τ

I

Linearisation (sin (x) ≈ x if x ≈ 0 or x ≈ π)

θ̈ = −k

I
θ̇ − Lmg

I
θ + τ̃

Formally we set ω = θ̇ = θ1 and θ = θ2, i.e.(
θ̇1 (t)

θ̇2 (t)

)
=

(
−k

I
Lmg
I

0 1

)(
θ1 (t)
θ2 (t)

)
+

(
τ̃
0

)
,

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



General ODE case

Characterise the system dynamics by an arbitrary function f

dx (t)

dt
= f (x (t)) (5)

Expand f into a Taylor series (may not always be a good approximation)

f (x) = f (x0)+
df (x0)

dx
(x − x0)+

1
2
d2f (x0)

dx2 (x − x0)
2+

1
6
d3f (x0)

dx3 (x − x0)
3+. . .

Often we can consider linear terms only (and constant terms) as a
linearisation of the form (5)

dx (t)

dt
= f (x0) +

df (x0)

dx
(x − x0)

This is also how we get the dynamical matrix, i.e. bij = dfi (x0)
dxj

,
for the multidimensional linear case.

What if df (x0)
dx ≈ 0 (much smaller than higher-order terms)?

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



ODE (Open Dynamics Engine) http://ode.org

Means also Ordinary Differential Equation

Written in C++ (internal), C (user interface) by Russel Smith
(2000s)
Physics engine (graphics engine is not even part of ODE):
Rigid body dynamics simulation engine with collision detection
(plus friction, grouping, constraints, joints etc.)
Elements: box, sphere, capsule, mesh, cylinder
Perfect for robotics (Run “webots” on DICE)
Stability-accuracy trade-off?
By now largely outdated

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Collision handling in ODE

Choice of convex pieces is useful for this purpose
Collision detection before each simulation step gives a list of
contact points
Determine surface normal and distance (can be negative).
A special contact joint is created for each contact point.
The contact joints are put in a joint "group".
A simulation step is taken.
All contact joints are removed from the system.
Collision functions are add-on and can be replaced by other
collision detection libraries.

More about this later

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Conclusion

Continuous time appears to mean also continuous behaviour:
Natura non facit saltus [Leibniz, Darwin]. In other words:
Processes (such as collisions) need to be considered at an
appropriate time-scale.
Subtle difference exists between discrete and continuous case.
To include control forces, we need to consider 2nd order
systems.
Linearisation is a way to deal with non-linear dynamics at a
slow time scale (frequent updates).

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Next topics

Numerical integration
Non-linearity and chaos
Stochastic systems
Iterated functions
Trouble shooting

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh


