Simulation, Analysis, and Validation of Computational Models — Linear Systems —

Lecturer: Michael Herrmann School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177

- **•** Linear systems
- **•** Examples
- ODE
- **o** Outlook

Last time: Exponential growth/decay in discrete time

For $S = (0, \infty)$, $\mathcal{I} = \{0, 1, 2, \dots\} = \mathbb{N}_0$, consider the dynamical system:

$$
S_{t+1}=aS_t,
$$

where $a > 0$ is a constant growth factor. Given S_0 , we find^{*}

$$
S_t = a^t S_0
$$

If the sequence is shifted $\tilde{S}_0 = S_{t_1}$ then

$$
\tilde{S_{t_2}}=a^{t_2}\tilde{S_0}=a^{t_2}a^{t_1}S_0=a^{t_2+t_1}S_0=S_{t_2+t_1}.
$$

Asymptotic behaviour $\lim_{t\to\infty} S_t =$ $\sqrt{ }$ \int \mathcal{L} $0 \quad a < 1$ S_0 a = 1 ∞ a > 1

Exponential growth/decay in continuous time

For $\mathcal{S}=(0,\infty)$, $\mathcal{I}=[0,\infty)=\mathbb{R}^+_0$, consider the dynamical system: $S_{t+1} = aS_t$ (1)

In a continuous system only small steps can be made, so consider

$$
S_{t+1} - S_t = aS_t - S_t,
$$

$$
\frac{S_{t+\Delta t} - S_t}{\Delta t} = aS_t - S_t, \text{ for } \Delta t = 1
$$

Choice of the time unit is arbitrary, so it can as well be small:

$$
\frac{S_{t+\Delta t}-S_t}{\Delta t}=aS_t-S_t, \text{ for } \Delta t > 0
$$

Two steps (not much has changed from the discrete case):

- \bullet Calculate change: Δ $S_t = (a-1)\,S_t$, where $\Delta S_t = \frac{S_{t+\Delta t}-S_t}{\Delta t}$ ∆t
- ව Update: $S_{t + \Delta t} = S_t + \Delta S_t$, and increment time by Δt

Exponential growth in continuous time

Is it feasible to consider arbitrary short times, i.e. $\Delta t \rightarrow 0$?

$$
\lim_{\Delta t \to 0} \frac{S_{t+\Delta t} - S_t}{\Delta t} = \frac{dS_t}{dt} = (a-1) S_t,
$$

We will now write \emph{c} instead of $\emph{a} - 1$, and \emph{x} $\emph{(t)}$ instead of \emph{S}_{t} . Does the equation (A dot over a variable denotes the time derivative.)

$$
\frac{dx(t)}{dt} = cx(t) \quad \text{or} \quad \dot{x}(t) = cx(t) \tag{2}
$$

describe exponential growth? To check, we can simulate (later) or calculate analytically (see below).

What is the meaning of $\dot{x}(t) = cx(t)$?

- Causal: Temporal change depends on the function value.
- Epistemic: Given $x(0)$, Eq. [2](#page-4-0) characterises a function $x(t)$.
- Mathematical: Find function $x(t)$, given $x(0)$ and Eq. [2.](#page-4-0)
- Algorithmic: Find a good approximation of $x(t)$.

Exponential growth in continuous time (analytical)

Solving the equation $\dot{x}(t) = cx(t)$ analytically:

$$
\frac{dx(t)}{dt}=cx(t)
$$

or, if 1 \times $(t) \neq 0$,

$$
\frac{1}{x(t)}\frac{dx(t)}{dt}=c
$$

Integrate both sides

$$
\int_{t_0}^{t_1} \frac{1}{x(t)} \frac{dx(t)}{dt} dt = \int_{t_0}^{t_1} c dt
$$

Substitute $x = x(t)$ where $dx = \frac{dx(t)}{dt}dt$ ("cancel the dt ") with $x_0 = x(t_0)$ and $x_1 = x(t_1)$

$$
\int_{x_0}^{x_1} \frac{1}{x} dx = \int_{t_0}^{t_1} c dt
$$

¹Assumption to be checked later.

Exponential growth in continuous time (analytical)

Solve the integrals

$$
\int_{x_0}^{x_1} \frac{1}{x} dx = \int_{t_0}^{t_1} c dt
$$

\n
$$
\log(x_1) - \log(x_0) = c (t_1 - t_0)
$$

\n
$$
\log \left(\frac{x_1}{x_0}\right) = c (t_1 - t_0)
$$

\n
$$
x_1 = x_0 \exp(c (t_1 - t_0))
$$

For $t_0 = 0$, $t_1 = t$, and $x_1 = x(t)$, we find the solution:

$$
x(t) = x_0 \exp(c t)
$$
(3)

$$
\lim_{t \to \infty} x(t) = \begin{cases} 0 & c < 0 \\ x_0 & c = 0 \\ \infty & c > 0 \end{cases}
$$

Properties of the exponential function imply semigroup property, see last lecture SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Exponential growth in continuous time: Remarks

Discrete [\(1\)](#page-3-0) and continuous [\(2\)](#page-4-0) systems appear similar, however

- Comparing $x_0 \exp(ct) = x_0 (\exp c)^t$ and $S_0 a^t$, we find $a = \exp(c)$,
- $c = a 1$ is a good approximation only for $c \approx 0$, $a \approx 1$, i.e. the size of the time step does not matter, if not much happens within a time step (what "happens" depends on the time step with which we have tampered, see slide [5\)](#page-4-1).
- c can below -1 , while $a > 0$, in all these cases the solution does not cross 0 from either side (see assumption above).
- If we start with $x(0) = 0$ or with $S_0 = 0$, nothing will happen.
- Similar to continuous compounding of interest
- Was the transition to the continuous case worth the effort, when we will consider simulated systems anyway?

Linear Dynamics in 2D for continuous time

 $x = (-\infty, \infty)^2$, $\mathcal{I} = [0, \infty) = \mathbb{R}_0^+$, consider the dynamical system:

$$
\begin{pmatrix}\n\dot{x}_1(t) \\
\dot{x}_2(t)\n\end{pmatrix} = B \begin{pmatrix}\n x_1(t) \\
 x_2(t)\n\end{pmatrix} = \begin{pmatrix}\n b_{11} & b_{12} \\
 b_{21} & b_{22}\n\end{pmatrix} \begin{pmatrix}\n x_1(t) \\
 x_2(t)\n\end{pmatrix}, \quad (4)
$$

where B is a constant matrix. Given $\mathrm{x}\left(0\right) =\left(x_{1}\left(0\right) ,x_{2}\left(1\right) \right) ^{\top}$, we are going to solve [\(4\)](#page-8-0). In case $b_{12} = b_{21} = 0$, this is easy (see above).

Idea: Find rotation matrix R^\top to rotate B into diagonal form $D \to$ easy solution of decoupled system \rightarrow rotate back.

where R is an orthogonal (rotation) matrix, $RR^{\top} = 1$ (unit matrix). The matrix R will be obtained from the eigenvectors of B . Eigen-decomposition: Assume we can find 2D vectors ρ_i , $i \in \{1,2\}$ with $\lambda_i \rho_i = B \rho_i$ for some λ_i , then $B = \sum_{i=1}^2 \lambda_i \, \rho_i \rho_i^{\top}$. SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Linear Dynamics in 2D for continuous time

The columns of $R=(\rho_1,\rho_2)$ are eigenvectors of $B=\sum_{i=1}^2\lambda_i\rho_i\rho_i^\top$:

$$
R^{T}BR = (\rho_{1}, \rho_{2})^{\top} \sum_{i=1}^{2} \lambda_{i} \rho_{i} \rho_{i}^{T} (\rho_{1}, \rho_{2})
$$

\n
$$
= (\rho_{1}, \rho_{2})^{\top} \lambda_{1} \rho_{1} \rho_{1}^{T} (\rho_{1}, \rho_{2}) + (\rho_{1}, \rho_{2})^{\top} \lambda_{2} \rho_{2} \rho_{2}^{T} (\rho_{1}, \rho_{2})
$$

\n
$$
= \lambda_{1} (\rho_{1}, 0)^{\top} \rho_{1} \rho_{1}^{T} (\rho_{1}, 0) + \lambda_{2} (0, \rho_{2})^{\top} \rho_{2} \rho_{2}^{T} (0, \rho_{2})
$$

\n
$$
= \lambda_{1} \begin{pmatrix} \rho_{1}^{T} \rho_{1} \rho_{1}^{T} \rho_{1} & 0 \\ 0 & 0 \end{pmatrix} + \lambda_{2} \begin{pmatrix} 0 & 0 \\ 0 & \rho_{2}^{T} \rho_{2} \rho_{2}^{T} \rho_{2} \end{pmatrix}
$$

\n
$$
= \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{pmatrix}
$$

because eigenvectors are normalised $\rho_1^\top \rho_1 = 1$, $\rho_2^\top \rho_2 = 1$, and orthogonal $\rho_1^{\top} \rho_2 = \rho_2^{\top} \rho_1 = 0$.

For this reason, also R is orthogonal, and it is easy to show that $R^{\top} = R^{-1}$, so it doesn't matter whether we use $R^{\top}BR$ or $R^{-1}BR$.

Linear Dynamics in 2D for continuous time

Putting things back together: Get solution of

$$
\dot{y} = \left(\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array}\right) y
$$

simply by stacking solutions of Eq. [3](#page-6-0) (above):

$$
\left(\begin{array}{c}y_1(t)\\y_2(t)\end{array}\right)=\left(\begin{array}{c}y_1(0)\exp(\lambda_1 t)\\y_2(0)\exp(\lambda_2 t)\end{array}\right)
$$

where $y = R^{\top}x$, i.e. $x = R y$.

We transform the given initial conditions $x\left(0\right)$ to $y\left(0\right) =R^{\top}x\left(0\right) ,$ and obtain the solution:

$$
\left(\begin{array}{c}x_1(t)\\x_2(t)\end{array}\right)=R\left(\begin{array}{c}y_1(0)\exp{(\lambda_1 t)}\\y_2(0)\exp{(\lambda_2 t)}\end{array}\right)
$$

Linear Dynamics in 2D for continuous time: Remarks

- Works in an analogous way also for higher dimensions
- What if λ_i are complex? Use Euler formula for $k = 1, 2$:

$$
y_k(t) = (u_k(0) \pm iv_k(0)) \exp((z_k \pm iw_k)t)
$$

= $(u_k(0) \pm iv_k(0)) y_k(0) \exp((z) t) (\cos wt \pm i \sin wt),$

 $"±"$ because for real matrices the non-real eigenvalues are pairs. Eigenvector are then also complex, and thus also initial conditions.

- What if the matrix B is not diagonalisable, i.e. $BB^\top \neq B^\top B?$
- Next slide shows asymptotic behaviours for almost all different cases. Phase plot: x space and vector of changes x (small arrow).

- The system is stable, if all real parts of eigenvalues are negative.
- The system is unstable, if one eigenvalue has positive real part.
- Non-zero imaginary parts in any eigenvalues lead to oscillations or rotational effects.
- Control theory aims at moving or placing eigenvalues to the negative side (and to reduce oscillations).

Is this really all?

No.

- Dynamical variables can occur in non-linear functions.
- In quasi-linear cases, parameter matrix can change over time (including number of relevant eigenvalues).
- Derivatives w.r.t. different quantities (partial differential equations)
- Noise can affect state measurements or even perturb the parameters.
- Delays before a state measurement causes a change of state (control!) or there can be various delays.
- Non-standard solutions are possible (sliding mode).

Yes (almost).

A simulation can appear realistic, if dynamic matrix changes in a suitable way (and collisions are treated separately).

- Newton's 2nd law $F = m \ddot{x}$ (force = change of momentum)
- To control the dynamics, add forces!

$$
a\ddot{x}(t) + b\dot{x}(t) + c x(t) = F(t)
$$

- Practically, the coefficients a, b, c need to have the correct units, as the equation is all about acceleration [length/time²].
- **•** Higher-order time derivatives in linear systems can be treated like multi-dimensional linear (first-order) systems.

Example: Free fall in a gravitational field

Gravitational acceleration $g = 9.81 \frac{m}{s^2}$ towards - x_2 , no air resistance

To determine the integration constants, assume $x(0) = \begin{pmatrix} 0 & 0 \ 0 & 0 \end{pmatrix}$ 0 ,

$$
v(0) = \dot{x}(0) = \begin{pmatrix} v_0 \\ v_0 \end{pmatrix} \Rightarrow c_1 = c_2 = v_0
$$
 and $d_1 = d_2 = 0$

Example: Upright pendulum (higher-order system)

Movement determined by impulse, friction, potential energy, torque [ignoring the details]:

$$
I\ddot{\theta} + k\dot{\theta} + Lmg\sin\theta = \tau
$$

Known are current state $\dot{\theta}(t)$, $\theta(t)$ and input τ ,

$$
\ddot{\theta} = -\frac{k}{I}\dot{\theta} - \frac{Lmg}{I}\sin\theta + \frac{\tau}{I}
$$

Linearisation (sin $(x) \approx x$ if $x \approx 0$ or $x \approx \pi$)

$$
\ddot{\theta} = -\frac{k}{l}\dot{\theta} - \frac{Lmg}{l}\theta + \tilde{\tau}
$$

Formally we set $\omega = \dot{\theta} = \theta_1$ and $\theta = \theta_2$, i.e.

$$
\binom{\dot{\theta}_1\left(t\right)}{\dot{\theta}_2\left(t\right)}\!\!=\!\!\binom{-\frac{k}{7}-\frac{Lmg}{l}}{0}\!\left(\frac{\theta_1\left(t\right)}{\theta_2\left(t\right)}\right)+\binom{\tilde{\tau}}{0},
$$

General ODE case

Characterise the system dynamics by an arbitrary function f

$$
\frac{dx(t)}{dt} = f(x(t))\tag{5}
$$

Expand f into a Taylor series (may not always be a good approximation)

$$
f(x) = f(x_0) + \frac{df(x_0)}{dx}(x - x_0) + \frac{1}{2}\frac{d^2f(x_0)}{dx^2}(x - x_0)^2 + \frac{1}{6}\frac{d^3f(x_0)}{dx^3}(x - x_0)^3 + \dots
$$

Often we can consider linear terms only (and constant terms) as a linearisation of the form [\(5\)](#page-18-0)

$$
\frac{dx(t)}{dt}=f(x_0)+\frac{df(x_0)}{dx}(x-x_0)
$$

This is also how we get the dynamical matrix, i.e. $b_{ij} = \frac{df_i(x_0)}{dx_i}$ $\frac{i(X_0)}{dx_j}$, for the multidimensional linear case.

What if $\frac{df(x_0)}{dx} \approx 0$ (much smaller than higher-order terms)?

Means also Ordinary Differential Equation

- Written in C++ (internal), C (user interface) by Russel Smith (2000s)
- Physics engine (graphics engine is not even part of ODE): Rigid body dynamics simulation engine with collision detection (plus friction, grouping, constraints, joints etc.)
- Elements: box, sphere, capsule, mesh, cylinder
- **•** Perfect for robotics (Run "webots" on DICE)
- Stability-accuracy trade-off?
- By now largely outdated

Collision handling in ODE

- Choice of convex pieces is useful for this purpose
- Collision detection before each simulation step gives a list of contact points
- Determine surface normal and distance (can be negative).
- A special contact joint is created for each contact point.
- The contact joints are put in a joint "group".
- A simulation step is taken.
- All contact joints are removed from the system.
- Collision functions are add-on and can be replaced by other collision detection libraries.

More about this later

- Continuous time appears to mean also continuous behaviour: Natura non facit saltus [Leibniz, Darwin]. In other words: Processes (such as collisions) need to be considered at an appropriate time-scale.
- Subtle difference exists between discrete and continuous case.
- To include control forces, we need to consider 2nd order systems.
- Linearisation is a way to deal with non-linear dynamics at a slow time scale (frequent updates).
- Numerical integration
- Non-linearity and chaos
- Stochastic systems
- Iterated functions
- Trouble shooting