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Linear systems

ODE

°
o Examples
°

e Outlook
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Last time: Exponential growth/decay in discrete time

For § =(0,00), Z =1{0,1,2,...} = Ny, consider the dynamical
system:
5t+1 = a$;,

where a > 0 is a constant growth factor. Given Sy, we find*
S =a'Sy
If the sequence is shifted Sy = St then
Si, = a8y = aa1 Sy = a2 TSy =S, 4 .
Asymptotic behaviour 0 a<l1

lim S;={S a=1

t—o00
oo a>1
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Exponential growth/decay in continuous time

For § = (0,00), Z = [0,00) = R{, consider the dynamical system:
St+1 = aSt (1)

In a continuous system only small steps can be made, so consider

St11 — Se = a5 — S,

S -5
%:ast—st, for At=1

Choice of the time unit is arbitrary, so it can as well be small:

S -S
%tf:asﬁst, for At >0

Two steps (not much has changed from the discrete case):

@ Calculate change: AS; = (a—1)S;, where AS, = A=
@ Update: S;iar = St + AS;, and increment time by At
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Exponential growth in continuous time

Is it feasible to consider arbitrary short times, i.e. At — 07
St+At - St dSt

lim —————=—=(a—1)S
atSo At dt ( ) S
We will now write ¢ instead of a — 1, and x (t) instead of S;. Does
the equation (A dot over a variable denotes the time derivative.)
dx (t
ng ) _ () or x(t) = ex(t) (2)

describe exponential growth? To check, we can simulate (later) or
calculate analytically (see below).

What is the meaning of x (t) = cx (t)?

e Causal: Temporal change depends on the function value.

e Epistemic: Given x (0), Eq. 2 characterises a function x (t).
e Mathematical: Find function x (t), given x (0) and Eq. 2.
@ Algorithmic: Find a good approximation of x (t).
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Exponential growth in continuous time (analytical)

Solving the equation x (t) = cx (t) analytically:

dxdgt) ~ o (t)
or, if! x(t) #0,
1 dx(t)
x() de €

Integrate both sides

/tlldX(t)dt_/tlcdt
to X(t) dt to

Substitute x = x (t) where dx = d);(tt) dt (“cancel the dt") with
xo = x (to) and x; = x (t1)

X1 1 51
/ —dx = / cdt
X0 X to

! Assumption to be checked later.
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Exponential growth in continuous time (analytical)

X1 1 t1
/ —dx = / cdt
X0 X to

Solve the integrals

log (x1) — log(x0) = c(t1 — tp)
log (;1)) = c(t1 — tp)
X1 = Xg exp(c(t1 — to))

For to =0, t; = t, and x; = x (t), we find the solution:

x(t) =xpexp(ct) (3)
0 ¢c<o0
tlngox(t): xo ¢=0
oo ¢>0

Properties of the exponential function imply semigroup property, see last lecture
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Exponential growth in continuous time: Remarks

Discrete (1) and continuous (2) systems appear similar, however

o Comparing xpexp (ct) = xo (exp )" and Spat, we find
2= exp(c),

@ ¢ =a—1isa good approximation only for c~ 0, a~ 1,
i.e. the size of the time step does not matter, if not much
happens within a time step (what “happens’ depends on the
time step with which we have tampered, see slide 5).

@ c can below —1, while a > 0, in all these cases the solution
does not cross 0 from either side (see assumption above).

o If we start with x (0) = 0 or with So = 0, nothing will happen.
°

@ Was the transition to the continuous case worth the effort,
when we will consider simulated systems anyway?
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Linear Dynamics in 2D for continuous time

x = (—00,00)% I = [0,00) = R, consider the dynamical system:

X1 (t) . X1 (t) . bi11 b1 X1 (t)
(a6 ) =2 (50)-(m m)(58) @
where B is a constant matrix. Given x (0) = (x; (0),x2 (1)), we are

going to solve (4). In case bia = by; = 0, this is easy (see above).

Idea: Find rotation matrix R" to rotate B into diagonal form D —
easy solution of decoupled system — rotate back.

x = Bx
R'x = RTBRR"x
—~—~ N— '~
y D y

where R is an orthogonal (rotation) matrix, RR" = 1 (unit
matrix). The matrix R will be obtained from the eigenvectors of B.

Eigen-decomposition: Assume we can find 2D vectors p;, i € {1,2}
with \;p; = Bp; for some \;, then B = Z?:l pY p,-p,-T.

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh



Linear Dynamics in 2D for continuous time

The columns of R = (p1, p2) are eigenvectors of B = Z?Zl Aipip}:

2
RTBR = (p1,p2)"Y_ Nipini (p1,p2)
i—1

(p1, p2) " A1 (1, p2) + (01, p2) T X2p2aps (p1, p2)
= A1(/)17 O)Tplp;.r(ph 0) + )‘2(07 pg)szp;(O, [)2)

ToT
_ pi p1p] p1 0) <0 0 )
= A + A2
' < 0 0 0 13 p2p3 P2
B A1 0
N 0 X
because eigenvectors are normalised p{ p1 = 1, pJ p2 = 1, and

orthogonal p{ p» = pj p1 = 0.

For this reason, also R is orthogonal, and it is easy to show that
RT = R71, so it doesn't matter whether we use RT BR or R~1BR.
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Linear Dynamics in 2D for continuous time

Putting things back together: Get solution of

. (A O
.y - 0 )\2 y
simply by stacking solutions of Eq. 3 (above):
( y1(t) > _ < y1(0)exp (A1) >
Y2 (t) V2 (0) exp ()\2 t)
where y = RTx, ie. x =R y.

We transform the given initial conditions x (0) to y (0) = R x (0),
and obtain the solution:
)

xi(t) ) _ y1(0)exp (A1t
( % (1) > = R( > (0) exp (o ¢
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Linear Dynamics in 2D for continuous time: Remarks

@ Works in an analogous way also for higher dimensions
e What if \; are complex? Use Euler formula for k = 1,2:

v (t) = (uk(0) £ ivk (0))exp ((zx £ iwgk) t)
= (uk(0) £ ivk (0)) vk (0) exp ((2) t) (cos wt £ i sin wt),

“+" because for real matrices the non-real eigenvalues are pairs.
Eigenvector are then also complex, and thus also initial conditions.

o What if the matrix B is not diagonalisable, i.e. BBT # BT B?

@ Next slide shows asymptotic behaviours for almost all different
cases. Phase plot: x space and vector of changes x (small arrow).
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Stability and control

@ The system is stable, if all real parts of eigenvalues are
negative.

@ The system is unstable, if one eigenvalue has positive real part.

@ Non-zero imaginary parts in any eigenvalues lead to
oscillations or rotational effects.

@ Control theory aims at moving or placing eigenvalues to the
negative side (and to reduce oscillations).
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s this really all?

No.

@ Dynamical variables can occur in non-linear functions.

@ In quasi-linear cases, parameter matrix can change over time
(including number of relevant eigenvalues).

e Derivatives w.r.t. different quantities (partial differential
equations)

@ Noise can affect state measurements or even perturb the
parameters.

@ Delays before a state measurement causes a change of state
(control!) or there can be various delays.

e Non-standard solutions are possible (sliding mode).
Yes (almost).

@ A simulation can appear realistic, if dynamic matrix changes in
a suitable way (and collisions are treated separately).
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How to make things move?

Newton's 2nd law F = m X (force = change of momentum)

To control the dynamics, add forces!

ax (t)+ bx(t)+cx(t) = F(t)

Practically, the coefficients a, b, ¢ need to have the correct
units, as the equation is all about acceleration [length/time?].

Higher-order time derivatives in linear systems can be treated
like multi-dimensional linear (first-order) systems.
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Example: Free fall in a gravitational field

Gravitational acceleration g:9.815m2 towards -x», no air resistance

2

oot

. 0 Srsatecisn

X ( t) — 0t esC0T
g 0

Integrate twice:

X0 = ( —gtcir c ) 4 h

X(t):< at+d ) i

—gt? + oot + do

. . , 0
To determine the integration constants, assume x (0) = < 0 )

V(O):*(O):<§2)=>C1:C2:voandd1:d2:0
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Example: Upright pendulum (higher-order system)

Movement determined by impulse, friction,
potential energy, torque [ignoring the details]:

10 + kO + Lmgsin® = 7
i Known are current state §(t), A(t) and input 7,
; k. L
i=—7 —ﬁsinM;

Linearisation (sin (x) = x if x ~ 0 or x ~ 7)

. k. Lmg
O==30-=

Formally we set w =6 = 61 and 6 = 6>, i.e.
() TIEE)6)
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General ODE case

Characterise the system dynamics by an arbitrary function f

dx (t)
=f t 5
O £ (o) )
Expand f into a Taylor series (may not always be a good approximation)
df 1d*f 1d3f
F(x) = f (x0)+ d(;") (x = x0)+3 dx(:") (x = x0)*+¢ dx(_j°) (x — x0)3+...

Often we can consider linear terms only (and constant terms) as a
linearisation of the form (5)

dx (t df (x
This is also how we get the dynamical matrix, i.e. b = dfé,(;;"),

for the multidimensional linear case.

What if % ~ 0 (much smaller than higher-order terms)?
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ODE (Open Dynamics Engine) http://ode.org

Means also Ordinary Differential Equation

e Written in C++ (internal), C (user interface) by Russel Smith
(2000s)

e Physics engine (graphics engine is not even part of ODE):
Rigid body dynamics simulation engine with collision detection
(plus friction, grouping, constraints, joints etc.)

Elements: box, sphere, capsule, mesh, cylinder
Perfect for robotics (Run “webots” on DICE)
Stability-accuracy trade-off?

By now largely outdated
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Collision handling in ODE

@ Choice of convex pieces is useful for this purpose

Collision detection before each simulation step gives a list of
contact points

(]

Determine surface normal and distance (can be negative).
A special contact joint is created for each contact point.
The contact joints are put in a joint "group".

A simulation step is taken.

All contact joints are removed from the system.

e 6 6 o6 o o

Collision functions are add-on and can be replaced by other
collision detection libraries.

More about this later
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@ Continuous time appears to mean also continuous behaviour:
Natura non facit saltus [Leibniz, Darwin]. In other words:
Processes (such as collisions) need to be considered at an
appropriate time-scale.

o Subtle difference exists between discrete and continuous case.

@ To include control forces, we need to consider 2nd order
systems.

@ Linearisation is a way to deal with non-linear dynamics at a
slow time scale (frequent updates).
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Next topics

Numerical integration

Non-linearity and chaos

o

o

@ Stochastic systems
o lterated functions
o

Trouble shooting
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