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Recap: Linear systems

Equation x = Ax

Including constant terms:
e Standard form x = Ax — b, i.e. b always affects x
o Easier form x = A (X — E) with b= A=1h, if A=1 exists,

otherwise some components of b may not affect x

Behaviour depends on the eigenvalues of A
e negative real part: stable
e positive real part: unstable
e non-zero imaginary part: rotational behaviour

Often useful for short-term prediction or modelling
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Last time: General ODE case

Characterise the system dynamics by an arbitrary function f

(1) _
L = (e () (1)

Expand f into a Taylor series (may not always be a good approximation)

2 1d%f (x0)
(x = x0) +6 dx3

df (Xo)
dx

1 d?f (xo)
(x = XO)+§ dx2

f(x) =1f(x)+ (x—xo)3+...

Often we can consider linear terms only (and constant terms) as a
linearisation of the form (1)

dx (t df (x
This is also how we get the dynamical matrix, i.e. b = dfé,(;;"),

for the multidimensional linear case.

What if % ~ 0 (much smaller than higher-order terms)?
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Example: Sine function (see pendulum of last lecture) is an anti-
symmetric (or odd) function. Thus, the Taylor expansion (at xg=0)

. x3 x5 x7 x9
contains only odd terms, due
to its derivatives (check!) Z
d*sin (x) +1 forkodd 1 \

dxk |._o |0 for k even .

sinfx)

2 XXIEONHS1200
5/120.0-x447/5040.0

which may reflect the oo ioes
symmetry of the system.

The approximation is not very good in general, but good enough
near xg = 0.
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Example: Nonlinear system

Last time, we have used sin x ~ x (for x =~ 0), now we consider one
more term in the Taylor series of an odd function:

x=f(x)=cx—dx® (2)

First, remember the linear case x = f (x) = cx: For ¢ < 0 stable,
and for ¢ > 0 unstable.

The parameter d is fixed (e.g. 1/6 for f (x) = sin(x) or here simply
d =1), i.e. if ¢ <0, then the cubic term (which acts in a similar
way) doesn’'t make a difference (left), but what happens for ¢ > 07

Fx) c<0 £(x) c>0

) "
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- X D
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Bifurcation diagram

Fixed points occur when the dynamics comes to a halt at some
x =x* i.e. x=f(x)=0.

How does the parameter ¢ influence the fixed points?

1

x = f(x)
= ox+x° < 0 °
c <0 — one real solution .o
x* = 0 (stable) s
c>0 — three real solutions
x* = +Vcorx* =0 E 08 ° os ‘
(two stable, one unstable) x* depends here on ¢
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Attractors: What can happen (apart from fixed points)?

@ In linear systems we can usually describe the full dynamics:
exponential growth or decay, oscillations, or combinations.

@ In non-linear systems this is often not possible, and we often
consider attractors, i.e. asymptotic states or sets of states,
such as

o fixed points (locally similar to a node in a linear system)

o limit cycles (related to a center in a linear system, but with
attraction towards the cycle), only for state space dimension
> 2, and combinations of limit cycles (tori), only for state
space dimension > 3

e chaotic attractors (System does not come to a rest, but
remains in a certain part of the state space), only for state
space dimension > 3

@ Attractors are generally reached for t — oo, and if they are
reached for t — —oo, we call them unstable attractors.

@ Not included: Sets that are neither stable nor unstable (e.g. center)
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Limit cycles

Limit cycle is a closed N\
trajectory in state space . 7 \‘“
which is approached by other . »
trajectories that are spiralling \: ;/

towards it (or away from it for

an unstable limit cycle).
y ) By User:XaosBits, en.wikipedia, CCBY2.5

Van der Pol oscillator
Vibration, certain waves, neural activity is described as limit cycles
Respiration or heartbeat are controlled by complex limit cycles

Useful also in modelling and control of walking movements

Hilbert's 16(b)th problem: Find an upper bound for the number of limit cycles
in 2D dynamical systems with nonlinearity of degree n (unsolved for n > 1).
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Limit cycles: Poincaré—Andronov—Hopf bifurcation

Consider linear system (“center”)
Y1 Y1 0 -1 Y1
(3)=m(a)=(0 o) (%)

Eigenvalues of M: \; =i = solutions are x (t)=|xo| <(:|)ns((j:::))
Combine with the cubic system (2): (
o= (cp=p)y—r J

Y2 = yi+(cp—p)y (‘ ) _____
p o= ¥ t+yi>0 } A /
¢ < 0: fixed point |
¢ > 0 limit cycle

=

0 c
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Routes to chaos

Chaos refers to the behaviour of dynamical system with a sensitive
dependence on initial conditions.

@ Limit cycle folds over as parameters change: Period doubling
o Similarly: “baker” transformation (or cat map)

@ Practically, combinations of three limit cycles often turn into
chaos

Chaos is different form noise by short-term predictability. However,
high-dimensional chaos is practically indistinguishable from noise.
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Chaos in the logistic map

While all other slides are about continuous systems, this one is about a map (discrete time system).

Logistic map has cascade of period doublings turning into chaos
St+1 :)\St(l—St), AE [0,4], S5: € [0,1], teN

Fixed point: S=AS(1—-5) = S*=1-1

For A = 3 this fixed point becomes unstable, and a stable two-step limit

cycle appears, which becomes unstable near A = 3.45, then a stable four-
step limit cycle appears etc. This cascade converges at A &~ 3.56995 when
the dynamics becomes chaotic, albeit interspersed with periodic windows.

3 32 34 36 38 4

A

Relevant parameter space close-up of chaotic region incl. some unstable f.p.
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Chaos: Toy examples

Often studied examples are
3D systems of nonlinear
differential equations, such as
the Roessler system

X = —y—z
y = x+ay
z = b+z(x—c0)

a=b=02c=57

or the Lorenz system

o(y —x)
x(p—2z)—y
z = xy—pz

Typical values for the constants:
o =10, 8=28/3and p =28

Roessler attractor

Lorenz attractor

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh



Chaos: Real-world examples

@ The solar system seems to be a “clock work”, i.e. a limit cycle.
However, it's (currently very mildly) chaotic!.

@ Good drummers can produce a certain beat very precisely
(limit cycle), while professional drummers may embellish the
rhythm by tiny modulations (chaotic attractor).

@ Similar modulation of limit cycles can occur in walking.

@ Recurrent neural networks: Hopfield model can have only limit
cycles. For more general models, already three interconnected
neurons can produce chaotic signals.

@ Controlling the blade in front of a bulldozer in heterogeneous
environments may require a chaotic control strategy.

@ Strategies for search and exploration may become more
efficient, if autocorrelation varies. This can be achieved by
chaotic (rather than noisy) driving.

1Ma|hotra R, Holman M, Ito T. (2001) Chaos and stability of the solar system. PNAS 98, 12342-3.
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Conclusion on Nonlinear systems

@ Non-linear dynamics is predominant in all aspects nature, in
society, and in complex technical systems.

@ A major challenge in many fields of application of the theory is
the identification of imminent qualitative changes (“tipping
points”).

@ While linear systems are well understood, many problem in
non-linear dynamics remain to be solved, to be formulated or
to be discovered.

@ Numerical simulation of non-linear systems are still improvable.
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Numerical integration

@ Goal: As there is usually no analytical solution, we need to find
a numerical solution X (t) for t > ty for an ordinary differential
equation x = f (x), given x (tp) = X0 (0) = xo

@ An algorithm that calculates X can be evaluated by the integral

t
JRCCEEIC)R:
to

or by the maximum of the difference |x — X (t)| or by the order
of a polynomial that can still perfectly be integrated.

@ Find x at several points across the interval At using the ODE and
Taylor expansion. Weight and combine resulting values and to get
an estimate for t + At. Add corrector for further improvement.

@ Integration formulas depend on the specific method and differ in
number and weights and order of points along time axis.
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Numerical integration

Euler method (integrates linear functions perfectly, it's something)
x(t+ At) = x(t) + x (t) At where x (t) = f (x (1))

is simple and can be sufficient for small At, but it's only of order 1
so that errors can be large especially for exponential dynamics.

Example: x (t) = x (t) starting at x (0) = 1 using At =1

x(1)=x(0)+x(0)-1=2
X(2) = x () +x(1)-1=2+2.1=4
x(3)=x(2)+x(2)-1=44+4-1=8= x(n)=2"

At n = 4 Euler: 16, exp(4) =54.60: abs. error of 38.60
At =1 is generally too large, but reducing step width to 0.1 still

gives an abs. error of 9.34

Many better methods available.
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Numerical integration: Predictor—corrector method

Combinations of any methods are possible, but for simplicity we
start again with the Euler method for the Predictor step:

X(t+ At) = x(t) + x(t) At

Corrector step to interpolate the initial attempt with new result
from the predictor using the differential equation x = f (X (t + At))

R(t+ At)=x(t) + 3At (x(t) + f (% (t + At)))
which is called trapezoidal rule.

Above example: %(1) =2, f (X) =2 =
£(1)=1+L1-1-(1+2)=25(At=1)

(compare to e = 2.71828). = :

Y
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Numerical integration

@ Explicit methods determine the state for a later time from the state
of the system at present

@ Implicit methods determine the solution by solving an equation
involving the current state of the system and later ones.

@ Direct methods: Use intermediate values to cacluate the next
step

@ Multi-step method: Calcluate new values based on several
previous values (how to get started?)
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Numerical integration: Explicit methods

@ E.g. RK4 (4th order Runge-Kutta method, explicit)

At
X(t+At):x(t)+? ki + 2ky +2ks + kg | ,

mixture of derivatives
x(t)),

() 8).
()]

+ At) + At ks).

@ Solves ODEs with polynomial f of order not greater than 4 precisely.
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Numerical integration: Implicit methods

@ For highly non-linear ODEs, implicit methods may work better, i.e.
moving forwards and backwards in time (like predictor corrector).
Example: Adams-Moulton method.

x(t+ At) = x(t) + A5 (251F (x (t + At)) + 646f (x (t))
—264f (x (t — At)) + 106f (x (t — 2At))
—19f (x (t — 3At)))

@ Need to get started (multi-step method), by calculating the
first steps by more simple methods

@ Solves ODEs with polynomial f of order not greater than 5
precisely.
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Numerical integration: Points to remember

@ Because analytical solutions are mostly unavailable, numerical
integration is generally used, but can go wrong.

@ Simply reducing step widths can give an idea that the system
is problematic, but may be inefficient for solution

o Complex integration methods can help and are generally used
in numeric
o Adaptive methods, step width control (not discussed here)

@ Practically, 4th order Runge Kutta (RK4) is often sufficient.

@ For complex or chaotic systems, implicit methods should be
considered.
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Next topics

@ Relation between discrete and non-linear systems
@ More non-linear phenomena: Collisions

@ Noise

e Simulations
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