
Simulation, Analysis, and Validation of
Computational Models

— 5. Numerics of Non-Linear Systems —

Lecturer: Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177

Overview

Numerical integration
Collision
Percolation

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Recap: Chaos

Asymptotic behavior of a nonlinear system, when (stable) fixed
points, limit cycles and tori can be excluded in a deterministic,
simple dynamical system.
Sensitivity to initial conditions implies noise-like features, but
short-term predictions are possible.
Contains typically many unstable periodic trajectories.
Occurs when the period of the trajectory of the system’s state
diverges to infinity.
Occurs everywhere in nature, and in social and engineered
systems.
Mild chaos can add a bit of realism to a simulation.

H. Sayama (2015) Introduction to the Modeling and Analysis of Complex Systems. SUNY.

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Last time: Nonlinear systems

Non-linear dynamics is predominant in all aspects nature, in
society, and in complex technical systems.
A major challenge in many fields of application of the theory is
the identification of imminent qualitative changes (“tipping
points”).
While linear systems are well understood, many problem in
non-linear dynamics remain to be solved, to be formulated or
to be discovered.
Numerical simulation of non-linear systems are still improvable.

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Numerical integration: Simulating non-linear dynamics

Goal: If there is no analytical solution, we need to find a
numerical solution x̂ (t) for t ≥ t0 for an ordinary differential
equation ẋ = f (x), given x (t0) = x̂0 (0) = x0

An algorithm that calculates x̂ can be evaluated by the
integral ∫ t1

t0

(x (t)− x̂ (t))2 dt

maximum of the difference |x − x̂ (t)|
maximal order of a polynomial that is perfectly be integrated.

General idea: Find ẋ at some points across the interval [t, t + ∆t]
using the given ODE and Taylor expansion. Resulting values are
weighted and added to get an estimate for t + ∆t.
Integration formulas depend on the specific method and differ in
number and weights and order of points along time axis.

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Numerical integration
Euler method is the simplest integration formula

x (t + ∆t) = x (t) + ẋ (t) ∆t where ẋ (t) = f (x (t))

Perfect only for constant functions, but can be sufficient in other
cases (for small ∆t),
Errors can be relatively large especially for exponential dynamics.

Example: ẋ (t) = x (t) starting at x (0) = 1 using ∆t = 1

x (1) = x (0) + x (0) · 1 = 2

x (2) = x (1) + x (1) · 1 = 2 + 2 · 1 = 4

x (3) = x (2) + x (2) · 1 = 4 + 4 · 1 = 8 ⇒ x (n) = 2n

At n = 4 Euler: 16, exp(4) =54.60: abs. error of 38.60

∆t = 1 is generally too large, but reducing step width to 0.1 still
gives an abs. error of 9.34

Many better methods available.

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Numerical integration: Predictor–corrector method

Result from a simple formula can be corrected by another method.

Combinations of any methods are possible, but for simplicity we
start again with the Euler method for the Predictor step:

x̃ (t + ∆t) = x (t) + ẋ (t) ∆t

Corrector step to interpolate the initial attempt with new result
from the predictor using the differential equation ˜̇x = f (x̃ (t + ∆t))

x̂ (t + ∆t) = x (t) + 1
2∆t (ẋ (t) + f (x̃ (t + ∆t)))

which is called trapezoidal rule.

Above example: x̃ (1) = 2, f (x̃) = 2 ⇒
x̂ (1) = 1 + 1

2 · 1 · (1 + 2) = 2.5 (∆t = 1)
(compare to e = 2.71828).

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Numerical integration: Various classifications

Explicit methods determine the state for a later time from the state
of the system at present
Implicit methods determine the solution by solving an equation
involving the current state of the system and later ones.

Direct methods: Use intermediate values to calculate next step
Multi-step method: Calculate new values based on several
previous values (needs to get started by simple method)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Numerical integration: Explicit methods

E.g. RK4 (4th order Runge-Kutta method, explicit)

x (t + ∆t) = x (t) +
∆t

6

k1 + 2k2 + 2k3 + k4︸ ︷︷ ︸
mixture of derivatives

 ,

k1 = f (x (t)),

k2 = f

(
x

(
t +

∆t

2

)
+ ∆t

k1

2

)
,

k3 = f

(
x

(
t +

∆t

2

)
+ ∆t

k2

2

)
,

k4 = f (x (t + ∆t) + ∆t k3) .

4th order: The error of the result scales with (∆t)4 × 4th derivative
of the function f . I.e. it solves ODEs with polynomial f of order not
greater than 3 precisely.

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Numerical integration: Implicit methods

For highly non-linear ODEs, implicit methods may work better, i.e.
moving forwards and backwards in time (like predictor corrector).
Example: Adams-Moulton method.

x (t + ∆t) = x (t) + h
720 (251f (x (t + ∆t)) + 646f (x (t))

−264f (x (t −∆t)) + 106f (x (t − 2∆t))

−19f (x (t − 3∆t)))

Need to get started (multi-step method), by calculating the
first steps by more simple methods
Solves ODEs with polynomial f of order not greater than 4
precisely (order 5).

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Numerical integration: Points to remember

Because analytical solutions are mostly unavailable, numerical
integration is generally used.
Trade-off between complexity of the integration formula and a
small step width: Simply reducing step widths can give an idea
that the system is problematic, but may be inefficient for
solution.

Complex integration methods are usually available in numerical
modelling
Practically, 4th order Runge-Kutta (RK4) is often sufficient.
Adaptive methods, step width control (not discussed here)
For complex or chaotic systems, implicit methods should be
considered.

Check: Is the energy conserved also in the simulated system?

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Collisions

Collisions are essential in particle dynamics
Should be avoided in robotics (i.e. occur at zero speed), but
needed in robot simulator
Assumptions: Elastic, point contact, no spin, no friction, no
complex shapes, no deformation, no internal degrees of
freedom.
Trajectory at the collision is not smooth, because of
instantaneous effect is assumed.
Need to stop integration and handle collision separately.

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Collisions in 1D
Two masses m1 and m2 on a line collide with velocities v1 and v2
and depart with velocities v ′1 and v ′2 (masses remain unchanged)

For an elastic collision, and total momentum
m1v1 + m2v2 = m1v

′
1 + m2v

′
2

and total energy
1
2
m1v1

2 +
1
2
m2v2

2 =
1
2
m1v

′
1
2

+
1
2
m2v

′
2
2

are conserved, although momentum and energy can be transferred
from one object to the other one

v ′
1 =

m1v1 + m2v2

m1 + m2
+

m2

m1 + m2
(v2 − v1) = v1 +

2m2

m1 + m2
(v2 − v1)

v ′
2 =

m1v1 + m2v2

m1 + m2
+

m1

m1 + m2
(v1 − v2) = v2 +

2m1

m1 + m2
(v1 − v2)

I.e. weighted mean velocity + proportional slowdown or speedup
(JFYI: https://www.youtube.com/watch?v=HEfHFsfGXjs)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Collision in 2D

(a) Relative motion v1 of a moving
ball against resting one v2 = 0

(b) Contact between the two
convex objects defines
coordinate system

(c) After collision, original velocity
splits according to contact
coordinates

New v′2 will be in direction from x1 to x2 (at collision): x2 − x1.

Project v1 on unit vector x2−x1
‖x2−x1‖ :

〈
v1,

x2−x1
‖x2−x1‖

〉
x2−x1
‖x2−x1‖ for v2 = 0

or
〈
v1 − v2,

x2−x1
‖x2−x1‖

〉
x2−x1
‖x2−x1‖ for any v2

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Collision in 2D
v′1 direction is obtained from the vector orthogonal to (x2 − x1).

ṽ1 ∝

〈
v1 − v2, (x2 − x1)⊥

〉
‖x2 − x1‖2

(x2 − x1)⊥

ṽ2 ∝ 〈v1 − v2, x2 − x1〉
‖x2 − x1‖2

(x2 − x1)

(
a
b

)⊥
=

(
−b
a

)

The respective lengths are found as in the 1D case (see above)

v ′
1 = v1 +

2m2

m1 + m2
(v2 − v1)

v ′
2 = v2 +

2m1

m1 + m2
(v1 − v2)

So that we arrive at

v′1 = v1 +
2m2

m1 + m2

〈v2 − v1, (x2 − x1)⊥〉
‖x2 − x1‖2

(x2 − x1)⊥

v′2 = v2 +
2m1

m1 + m2

〈v1 − v2, x2 − x1〉
‖x2 − x1‖2

(x2 − x1)

Check conservation of momentum and energy!

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Simple Collision Detection

Sort objects lexicographically by coordinate
Check first coordinate (then second coordinate etc.) for any
close objects (or hierarchically for object parts) to fill active list
Calculate any position increments ẋ (see previous lecture) and
check active list for penetration
Revert increment of relevant object parts and invoke collision
handler
Calculate forces to other parts of the same object

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Collisions: Points to remember

In a collision the (possibly) linear microscopic dynamics is
abstracted to a nonlinear macroscopic effect
Using heuristics and simple elementary shapes can be useful
Realistic collision of deformable material is still subject of
research
More than two objects: Chaining, jamming, percolation

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Phase transitions

Last lecture: Non-linear equations describing a qualitative
change of a macroscopic system
In phase transitions, order-parameters are used to describe
typical phenomena
Universality: Order parameter effects implied by typical
equations (such as ẋ = cx − x3)
Percolation as a simple example of a phase transition in
microscopic description

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Percolation

Classical example: Mix an in
increasing fraction of iron
particle with sand, and check a
whether the mixture conducts
electricity
Mathematical problem:
Formation of a giant component

Other examples: Transport in porous media, underground CO2
storage, drip-through coffee making, groundwater recharge, wear
and tear, forest fires, neural avalanches, spread of diseases (later)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Modelling

N × N grid of cells
Choose randomly whether a cell is conductive (probability p)
or not (probability 1− p)
Use flooding algorithm to identify conductive cluster: All
conductive cells with with a conductive cell next to them
Repeat many times to determine probability of conductivity of
the material as a whole

practically zero for small p
steeply increasing for a range of p
practically one for large p

Steepness of increase increases with N and becomes infinite
for N →∞: Unique value pcrit

Quantitative: Throughput increases for p > pcrit, similar to
pitchfork bifurction (see last lecture)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Percolation near critical value

Percolation in a 10× 10 square grid (top to bottom) near critical
occupation probability p =0.492

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Scaling of the critical range

Percolation probability in an N × N square grid over occupation
probability

25 50 100

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Conclusion on percolation

Practically interesting with a many applications
Shows a common type of phase transition
Distribution of the size of clusters at criticality decays as a
power law with the same exponent for 2D lattices
Percolation clusters are self-similar (fractals)
When modelling disease spreading, percolation with be studied
on a graph

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

Next topics

Noise
System modelling
Simulations

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

