Simulation, Analysis, and Validation of
Computational Models

— 5. Numerics of Non-Linear Systems —

Lecturer: Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177

@ Numerical integration
e Collision

@ Percolation

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

@ Asymptotic behavior of a nonlinear system, when (stable) fixed
points, limit cycles and tori can be excluded in a deterministic,
simple dynamical system.

@ Sensitivity to initial conditions implies noise-like features, but
short-term predictions are possible.

@ Contains typically many unstable periodic trajectories.

@ Occurs when the period of the trajectory of the system's state
diverges to infinity.

@ Occurs everywhere in nature, and in social and engineered
systems.

o Mild chaos can add a bit of realism to a simulation.

H. Sayama (2015) Introduction to the Modeling and Analysis of Complex Systems. SUNY.

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Last time: Nonlinear systems

@ Non-linear dynamics is predominant in all aspects nature, in
society, and in complex technical systems.

@ A major challenge in many fields of application of the theory is
the identification of imminent qualitative changes (“tipping
points”).

@ While linear systems are well understood, many problem in
non-linear dynamics remain to be solved, to be formulated or
to be discovered.

@ Numerical simulation of non-linear systems are still improvable.

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Numerical integration: Simulating non-linear dynamics

@ Goal: If there is no analytical solution, we need to find a
numerical solution X (t) for t > to for an ordinary differential
equation x = f (x), given x (tp) = X0 (0) = xo

@ An algorithm that calculates X can be evaluated by the

e integral

e maximum of the difference |x — X (t)|
e maximal order of a polynomial that is perfectly be integrated.
@ General idea: Find % at some points across the interval [t, t + At]
using the given ODE and Taylor expansion. Resulting values are
weighted and added to get an estimate for t + At.

@ Integration formulas depend on the specific method and differ in
number and weights and order of points along time axis.

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Numerical integration

Euler method is the simplest integration formula
x (t+ At) = x(t) + x (t) At where x (t) = f (x(t))

Perfect only for constant functions, but can be sufficient in other
cases (for small At),
Errors can be relatively large especially for exponential dynamics.

Example: x (t) = x (t) starting at x (0) = 1 using At =1

x(1) =x(0)+x(0)-1=2
x(2)=x(1)+x(1)-1=2+2-1=4
x(3)=x(2)+x(2)-1=4+4-1=8= x(n)=2"
At n = 4 Euler: 16, exp(4) =54.60: abs. error of 38.60
At = 1 is generally too large, but reducing step width to 0.1 still

gives an abs. error of 9.34

Many better methods available.

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Numerical integration: Predictor—corrector method

Result from a simple formula can be corrected by another method.

Combinations of any methods are possible, but for simplicity we
start again with the Euler method for the Predictor step:

X(t+ At) = x(t) + x(t) At

Corrector step to interpolate the initial attempt with new result
from the predictor using the differential equation x = f (X (t + At))

R (t+ At)=x(t) + At (3 (t) + f (% (t + At)))
which is called trapezoidal rule.

Above example: X(1) =2, f (X)) =2 =
2(1)=1+3-1-(1+2)=25(At=1)

(compare to e = 2.71828). = :

Y

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Numerical integration: Various classifications

@ Explicit methods determine the state for a later time from the state
of the system at present

@ Implicit methods determine the solution by solving an equation
involving the current state of the system and later ones.

@ Direct methods: Use intermediate values to calculate next step

@ Multi-step method: Calculate new values based on several
previous values (needs to get started by simple method)

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Numerical integration: Explicit methods

@ E.g. RK4 (4th order Runge-Kutta method, explicit)

At
X(t—i—At):x(t)—&—? ki +2ko +2ks + ks | ,

mixture of derivatives

() o).
ka_f(xt(t)Mtkz)

+ At) + At k3).

@ 4th order: The error of the result scales with (At)* x 4th derivative
of the function f. l.e. it solves ODEs with polynomial f of order not
greater than 3 precisely.

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Numerical integration: Implicit methods

@ For highly non-linear ODEs, implicit methods may work better, i.e.
moving forwards and backwards in time (like predictor corrector).
Example: Adams-Moulton method.

x (t+ At) = x(t) + =55 (251F (x (t + At)) + 646f (x (t))

—264f (x (t — At)) + 106f (x (t — 2At))
—19f (x (t — 3At)))

@ Need to get started (multi-step method), by calculating the

first steps by more simple methods

@ Solves ODEs with polynomial f of order not greater than 4
precisely (order 5).

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Numerical integration: Points to remember

@ Because analytical solutions are mostly unavailable, numerical
integration is generally used.

@ Trade-off between complexity of the integration formula and a
small step width: Simply reducing step widths can give an idea
that the system is problematic, but may be inefficient for
solution.

o Complex integration methods are usually available in numerical

modelling
o Practically, 4th order Runge-Kutta (RK4) is often sufficient.
o Adaptive methods, step width control (not discussed here)
e For complex or chaotic systems, implicit methods should be

considered.
@ Check: Is the energy conserved also in the simulated system?

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

e Collisions are essential in particle dynamics

@ Should be avoided in robotics (i.e. occur at zero speed), but
needed in robot simulator

@ Assumptions: Elastic, point contact, no spin, no friction, no
complex shapes, no deformation, no internal degrees of
freedom.

@ Trajectory at the collision is not smooth, because of
instantaneous effect is assumed.

@ Need to stop integration and handle collision separately.

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Collisions in 1D

Two masses m; and m» on a line collide with velocities v; and vy
and depart with velocities v; and v (masses remain unchanged)
For an elastic collision, and total momentum
/ /
mivi + mavo = mivy + mav,
and total energy
1

1 1 1
2 2 ’2 /2
—miVvi© + —MmMowv™ = —mivy + —mov.
5 1v1 5 2V2 2 1vi 5 2Vo
are , although momentum and energy can be transferred
from one object to the other one
, myvi + movo mo 2mo
vi = + Vo—Vvi)=vi+ —— (Vo — Vv,
1 m1 + mp m1+m2(2 1) ! m1+m2(2 1)
, mivy + movs m 2my
Vo = + Vi — Vo) = V; — (1 — V.
2 mi + mp m1+m2(1 2) 2+m1+m2(1 2)

I.e. weighted mean velocity + proportional slowdown or speedup

(JFYI: https://www.youtube.com/watch?v=HEfHFsfGXjs)

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Collision in 2D

(a) Relative motion v; of a moving 0:x @
ball against resting one vo =0

(b) Contact between the two)
convex objects defines 4

coordinate system

(c) After collision, original velocity
splits according to contact
coordinates

New v5 will be in direction from x; to x» (at collision): xo — x3.

X2—X1 X2—X1 —
Project vi on unit vector ”X ><1|| <v1, ||X2_X1”> Txa—xu]] forvo =0

_ xp—=x1_\ Xp—
or {vi—vo, ||x2—x1||> = X1” for any v»

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Collision in 2D

v} direction is obtained from the vector orthogonal to (x2 — x1).
€
~ <V1_V27(X2_X1) > ()J_ N
Vi Xo — X1 a _ —b
e =P (2) -(72)

¥ o <V1 — V2, X2 —X1>
[[x2 — x1[?

The respective lengths are found as in the 1D case (see above)

(x2 —x1)

2[772
vi = v+ —"—(va—w)
1

my + mo

2m1
v, = wnt—— (v —)
2

my + my

So that we arrive at

2my (v —v1, (x2 — x1)*) 1
Vi = V1 + Xo — X
A N e R
2m1 <V1 — V2, X2 — X1>
Vh = Vo + ’ Xy — X
2 my + my lIx2 — X1H2 (1)

Check conservation of momentum and energy!

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Simple Collision Detection

Sort objects lexicographically by coordinate

@ Check first coordinate (then second coordinate etc.) for any
close objects (or hierarchically for object parts) to fill active list

o Calculate any position increments x (see previous lecture) and
check active list for penetration

@ Revert increment of relevant object parts and invoke collision
handler

e Calculate forces to other parts of the same object

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Collisions: Points to remember

In a collision the (possibly) linear microscopic dynamics is
abstracted to a nonlinear macroscopic effect

Using heuristics and simple elementary shapes can be useful

Realistic collision of deformable material is still subject of
research

@ More than two objects: Chaining, jamming, percolation

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Phase transitions

@ Last lecture: Non-linear equations describing a qualitative
change of a macroscopic system

@ In phase transitions, order-parameters are used to describe
typical phenomena

e Universality: Order parameter effects implied by typical
equations (such as x = cx — x3)

@ Percolation as a simple example of a phase transition in
microscopic description

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Percolation

@ Classical example: Mix an in
increasing fraction of iron
particle with sand, and check a
whether the mixture conducts
electricity

o Mathematical problem:
Formation of a giant component

Other examples: Transport in porous media, underground CO,
storage, drip-through coffee making, groundwater recharge, wear
and tear, forest fires, neural avalanches, spread of diseases (later)

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Modelling

o N x N grid of cells
@ Choose randomly whether a cell is conductive (probability p)
or not (probability 1 — p)
@ Use flooding algorithm to identify conductive cluster: All
conductive cells with with a conductive cell next to them
@ Repeat many times to determine probability of conductivity of
the material as a whole
e practically zero for small p
e steeply increasing for a range of p
o practically one for large p
@ Steepness of increase increases with N and becomes infinite

for N — oo: Unique value pgit

e Quantitative: Throughput increases for p > peit, similar to
pitchfork bifurction (see last lecture)

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Percolation near critical value

Percolation in a 10 x 10 square grid (top to bottom) near critical
occupation probability p =0.492

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Scaling of the critical range

Percolation probability in an N x N square grid over occupation
probability

25 50 100

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Conclusion on percolation

Practically interesting with a many applications

Shows a common type of phase transition

Distribution of the size of clusters at criticality decays as a
power law with the same exponent for 2D lattices

Percolation clusters are self-similar (fractals)

@ When modelling disease spreading, percolation with be studied
on a graph

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

Next topics

@ Noise
@ System modelling

@ Simulations

SAVM 2024 /25 Michael Herrmann, School of Informatics, University of Edinburgh

