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Overview

Local SI/SIR model
Graphs and complex networks
Spreading of diseases, misinformation
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Previous lectures

Lecture 5: Percolation on a regular grid. When modelling
disease spreading, percolation with be studied on a graph
Lecture 6: Non-trivial effects of noise in non-linear systems

Today: Towards modelling of non-linear dynamics on complex
networks
Simplification of the real world to understand the dynamics of
processes such as epidemics

Spreading of diseases through air, by water, touch, via
parasites, blood etc. is modelled by transmission rates
Spatial relations, countermeasures, and many other features
can be included into the model in various ways ...
Noise, mutation, and external dynamics known to affect the
process are not considered now.
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Compartmental SIR model

Consider a small population in a small area during an epidemic.
People can be Susceptible, Infectious, or Recovered.
Consider respective fractions of the total population,
i.e. normalisation: S (t) + I (t) + R (t) = 1.
Ranges: 0 ≤ S (t) ≤ 1, 0 ≤ I (t) ≤ 1, 0 ≤ R (t) ≤ 1.
Discrete or continuous time?

Incubation period, daily and weekly rhythms suggest discrete
time
Analytical convenience suggests continuous time.
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Simplified discrete model (SIS)

Start with disregarding resistance1, only susceptible and infectious
(R (t) = 0, i.e. S (t) + I (t) = const, “endemic” case)

New infection S→ I prop. to meetings S (t) I (t) with rate α
Recovery I → S happens individually with rate β

S (t + 1) = S (t)−αS (t) I (t) + βI (t)

I (t + 1) = I (t)+αS (t) I (t)− βI (t)

Changes of S and changes of I are2 opposite ⇒
S (t) + I (t)= const ∀t

For stationary state set S (t + 1) = S (t), i.e.
αS (t) I (t) = βI (t) ⇒ S (∞) = β/α
unless I (t) = 0, then S (t) = 1 (which happens when β ≥ α)
Rates change: avoiding direct contact (α) and with care (β)

1such as by vaccination or immunity after recovery
2Equation is not correct in Li & Nakano, page 130.
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Numerical examples

Provides insight into some aspects, but is far too simple as a model.
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SI as a continuous model
Discrete model is difficult to solve and does not work for all para-
meters ⇒ Consider continuous analogue of the previous system

dS

dt
= −αS (t) I (t) + βI (t)

dI

dt
= αS (t) I (t)− βI (t)

Solution, e.g. in Maxima:

ode2((’diff(S,t)=-a*S*I+b*I,’diff(I,t)=a*S*I-b*I),(S,I),t);

gives only one solution:

I (t) = I0 exp ((αS (t)− β) t)

Balanced at S (t) = β/α, confirms expectation from discrete
model, except for shorter time scale.

We could consider instead dS
dt = −αS (t) (1− S (t))+ β (1− S (t))
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SIR model

Susceptible, Infectious, or Recovered (and immune to further
infection)
Recovery rate γ
Normalisation R (t) + S (t) + I (t) = 1 conserved by balanced
equations (i.e. already two equation would be sufficient )

S (t + 1) = S (t)−αS (t) I (t) + βI (t)

I (t + 1) = I (t)+αS (t) I (t)− βI (t)−γI (t)
R (t + 1) = R (t)+γI (t)

Include also vaccination rate µ (SIRV)

S (t + 1) = S (t)−αS (t) I (t) + βI (t)−µS (t)

I (t + 1) = I (t)+αS (t) I (t)− βI (t)−γI (t)
R (t + 1) = R (t)+γI (t)+µS (t)
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Numerical examples
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Continuous-time SIR model

Susceptible, Infectious, or Recovered (including immunisation, i.e.
β = 0, γ + β → γ)

Continuous system

Ṡ = −αIS

İ = αIS − γI

Ṙ = γI

Semi-analytical solution

S(t) = S(0)e−Q(t)

I (t) = 1− S(t)− R(t)

R(t) = R(0) +
γ

α
Q(t)

where Q(t) = β
∫ t
0 I (s) ds is the part of the solution that requires

numerical treatment.

Miller JC (2012) A note on the derivation of epidemic final sizes. Bull. Math Biol. 74: 2125–2141.
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SIR model: Discussion
SIR model can be useful to support an explanation3. It flexible to
include many other features, such as

birth and death
latency period (incubation period)
passive immunity
variable transition rates
heterogeneous population: ignorant or unaware, rationally
resistant, and exhausted
social strata (age, living conditions, access to information and
vaccination)
spatial effects (diffusion, travel etc.)

Information from data needed to calibrate models to provide a
predictive description

Rahimi e.a. (2023) A review on COVID-19 forecasting models. Neural Comput. Appl. 35, 23671-23681.

3applicable also to other systems, such as short-term synaptic plasticity
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Forest fires

Fire spreads to the four nearest neighbours, according to our
percolation model (hexagonal tessellation is more similar to
Euclidean geometry, but forest are often planted on grids).
If there are enough susceptible tree (i.e. their proportion is
high enough), size of the cluster can be “giant” which depends
on the total size, but will be a sizeable fraction of the forest.
Disconnected forests are more save, however, wildlife prefers
connected habitats.
What effects may “bridges” have? Or any other type of
(non-local) connections?
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Spread of diseases depends on mobility

The Black Death was a pandemic occurring in Europe 1346-1353.

Vogl, G. (2019) The Diffusion of the Black
Death and Today’s Global Epidemics.
Adventure Diffusion, Springer, p. 97-110.

Roger_Zenner, 2005 (wikipedia CC)

Today, network properties are more critical than geographic distance:
Hufnagel e a. (2004) Forecast and control of epidemics in a globalized world. PNAS 101, 15124-15129.
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Graphs

A graph represents relations between discrete elements.
A graph is a pair G = (V ,E ), where V is a set of vertices, and
E is a set of edges, i.e. pairs {v1, v2}, vi ∈ V .
Edges can be ordered pairs (directed graph) or unordered pairs
(undirected graph).
Connected components define reachability in undirected
graphs. In directed graph, reachability requires to find a path
from one vertex to the other one which can be done quite
quickly.
Adjacency matrix A = {aij} with aij = 1 if {vi , vj} ∈ E , and
aij = 0 otherwise.
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Graphs as complex networks: Small-worldness
Distance from vi and vj : Lij = n if (Am)ij = 0 , ∀m < n and
(An)ij > 0
Local clustering coefficient locally for node i (with ki
neighbours)

Ci =
#{j , k : Lij = 1 ∧ Lik = 1⇒ Ljk = 1}

ki (ki − 1)/2

or with the respective elements of the adjacency matrix

Ci =
1

ki (ki − 1)

∑
j ,k

AijAjkAki

or the relative number of triangles in the graph.
Small-world network: high clustering coefficient and quick
reachability, i.e. 〈Lij〉 ∝ logN for a graph with Nvertices.
Generation: Start with a locally connected graph (high 〈Ci 〉)
and replace some connections by random links (low 〈Lij〉)

Watts & Strogatz (1998) Collective dynamics of ’small-world’ networks" Nature. 393 (6684): 440–442.
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Graphs as complex networks: Degree distribution

In-degree the number of incoming edges of a vertex:
k in
i = # {j : Lij = 1}
Out-degree the number of outgoing edges of a vertex:
kout
i = # {j : Lji = 1}
Degree distribution: pin/out (m) = Prob

(
k in/out = m

)

(left) random graph (right), power-law (scale free) graph. N=1000, (Li & Nakano)
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Graphs vs. continuous systems*

Spectral graph theory studies eigenvalues and eigenvectors of
the adjacency matrix and other graph-related matrices, so one
can study dynamical systems characterised by these matrices.
In complex systems, we have connections between nodes (fixed
points), e.g. two saddle nodes can be connected be a directed
flow line, or some of the flow lines from an unstable fixed point
can connect to a stable fixed point, however the embedding
space affects some dynamical properties as well.
Graphs can be embedded in a 2D surface of suitable topology.
Hypergraphs may need more complex embeddings. See also
simplicial complex.
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Misinformation spreading on a Graph

Disinformation: Wrong on purpose.
Misinformation: Does not care about evidence or is incomplete
or biased
Either may pose as or use the other
Are the rates and frequencies more important for spreading or
the structure of the graph?
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Misinformation spreading on a Graph

Spreading of misinformation in an N = 1000 random graph (Li & Nakano).
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Applications of network dynamics

Relevant application domains include

Spreading of misinformation on social media,
Spreading of diseases in RW social networks
Failures in communications networks
Equity in financial networks
Superposition in acoustic networks
Transport in logistic systems
Activation in neural networks
Transcription regulation in genetic networks
Ideas in academic networks.

The predictive power of network theory varies across domains.
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Misinformation spreading on a Graph

Similar to SIR: Source, susceptible, follower, resistant
Also dynamics is similar, if we maintain:

List of neighbours
State of neighbours
Direction of links is important here
Different information spreads differently
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Conclusion

Simulation on a graph go beyond the neighbourhood-based
simulation in extended systems.
Different types of graphs differ in their support for dynamic
phenomena
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Next topics

Multi-agent systems (MAS)
Case studies
Simulation, verification etc.
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