
Simulation, Analysis, and Validation of
Computational Models
— Verification and Validation —

Lecturer: Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177



Overview

We started (lect. 6, 2nd part) to learn about systems engineering.
Today’s lecture about Verification and Validation is a continuation
of this topic.

Testing
Verification
Validation
Risk

Short summary: Validation is similar to verification, except that
verification checks before, and validation during actual use.

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



What is Systems Engineering?

“Systems Engineering represents a method, but also a mindset
which enables the design, construction, operations and testing
of a system in a successful way if done correctly.”
“It isn’t just about the design or the pieces that go into it, it is
a process that lasts the entire life of the product.”
“To exemplify in real life, system engineering is like cooking a
delicious cake. The ingredients are either made by you or
manufactured by a producer.”
“Systems engineering is the optimal process for bringing an
idea to reality with a combination of disciplines that work in
concert — just like all the instruments and vocals in [a] band
combine to make beautiful music.”

Haberfellner e.a. (2019) Systems engineering. Springer.
Olivier de Weck (2015) Fundamentals of Systems Engineering (Lect. 7)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



V-model (see lect. 6, 2nd part)

Vision Operation

Decompose Integrate

Details

L. Osborne e. a. (2005) Clarus Concept of Operations. FHWA-JPO-05-072, (Redrawn by Slashme).

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Testing

Consider a software system:
Functional testing
Complexity testing
Offline vs. online testing

Same applies for models of
any real processes:

Test: Verification
RW test: Validation

In both cases, final tests are conducted with customers and
stakeholders:

Meets specification and
expectations

Valid for purpose as
expected

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Testing caveats

Testing is critical, but expensive: Time, test rig or setup,
sensors, data acquisition etc.
Testing of components: Trust parts and libraries and vendors
of components or retest everything?
Calibration of sensors, procedures, and equipment
“Testing the test”: To what extent do test conditions and
benchmarks reflect actual operational usage or RW conditions
Simulated tests use dummy components if real ones are not
available, but this may not be representative
Failures often occur outside any test scenarios

Haberfellner e.a. (2019) Systems engineering. Springer.
Olivier de Weck (2015) Fundamentals of Systems Engineering (Lect. 9)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Verification vs. Validation

Verification (Tests): Is the
function realised correctly?

Validation (Case studies): Is
the correct function realised?

Modelling
Simulations
Alternative calculations
Comparison with other
proven designs
Experiments
Specialist technical
reviews
Mainly on components
and subsystems

Meets needs and
requirements of its
intended users in the
intended use environment
In real environment (may
also include simulations)
Full system according to
use cases by stakeholder
Determines the para-
meters for verification
across development cycles

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Validation vs. Verification loops

Haberfellner e.a. (2019) Systems engineering. Springer.
Olivier de Weck (2015) Fundamentals of Systems Engineering (Lect. 9)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Volkswagen emissions scandal

Can verification and validation get mixed up in practice?

US Environmental Protection Agency (EPA) found in 2015
that Volkswagen had intentionally programmed TDI diesel
engines (“Clean Diesel”) to activate emissions controls only
during laboratory emissions testing (verification).
However, the vehicles emitted up to 40 times more NOx in
real-world driving (validation) than in testing.
Volkswagen had chosen already around 2006 to program the
Engine Control Unit (ECU) to switch from lower fuel
consumption and high NOx emissions to low-emission
compliant mode when it detected an emissions test.
Software was deployed in ≈ 11 Million cars (2009 – 2015).
Volkswagen’s cost of the scandal ≈ 32 Billion USD.

https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Chernobyl disaster
Test to simulate cooling the reactor during an accident in
blackout conditions.
To get proper test results emergency core cooling system was
disabled.
Blackout occurred simultaneously with the rupture of a
coolant pipe.
Test carried out despite an accidental drop in reactor power.
Design issue: Shutting down the reactor in those conditions
results in a power surge.
Reactor components ruptured, lost coolants, and the resulting
steam explosions and meltdown destroyed the containment
building.
This was followed by a reactor core fire that spread radioactive
contaminants across Europe.
Casualties 30 - 50. Evacuation of more than 100,000 people.

https://en.wikipedia.org/wiki/Chernobyl_disaster

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Testing large computational systems

Testing can be the most time consuming design stage: Use
two levels of description:
Timing, power consumption to be checked at low level (easier
than testing logical functionality)
Hardware description language (HDL) to test functional
correctness (“functional equivalence”) of all logic paths at high
level. Relatively fast and easy to obtain good coverage
Tools for verification

Logic synthesis: To ensure equivalence of high-level logic and
circuit-level function
Timing tools on circuit level
Check of design to ensure that circuits can be realised

More general: Function vs. structure testing (“opaque box”
vs. “transparent box”)

Neil H. E. Weste and David Money Harris (2011) CMOS VLSI Design 4e. Pearson.

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Risk

Risk is defined as the combination of:
Probability that a system will experience an (undesired)
incident
Impact, consequences, or severity if the incident occurred
(hazard)

Includes technical or programmatic sources of problems (e.g. a
cost overrun, schedule slippage, safety mishap, health
problems, malicious activities, environmental impact, or failure
to achieve a needed scientific or technological objective or
success criterion)
Risk management: proactively identifies, analyzes, plans,
tracks, controls, communicates, documents risks

Olivier de Weck (2015) Fundamentals of Systems Engineering (Lect. 9)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Risk Management Framework

How to identify risk?
Brainstorm
Experience
Regulations (scores)
Ethics committee
Stakeholders

Mitigation domain: Pessimistic, Expected, and Optimistic

Olivier de Weck (2015) Fundamentals of Systems Engineering (Lect. 9)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Risk-reducing design process

Threshold Risk Metric (NASA)

Olivier de Weck (2015) Fundamentals of Systems Engineering (Lect. 9)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Safety

Component Failure Accidents
Single or multiple component failures
Usually assume random failure

Component Interaction Accidents
Related to interactive complexity and tight coupling
Use of computers and software
Role of humans in systems

Olivier de Weck (2015) Fundamentals of Systems Engineering (Lect. 9)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



System-theoretic view of safety

Safety is an emergent system property
Based on systems theory rather than reliability theory
Accidents arise from interactions among system components
(human, physical, computational) that violate the constraints
on safe component behavior and interactions
Losses are the result of complex processes, not simply chains
of failure events
Expect component interaction accidents
Most major accidents arise from a slow migration of the entire
system toward a state of high-risk

Olivier de Weck (2015) Fundamentals of Systems Engineering (Lect. 9)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Systems Theoretic Process Analysis (STPA)

How to find out about Component Interaction Accidents?

Olivier de Weck (2015) Fundamentals of Systems Engineering (Lect. 9)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Validation

Formalised validation starts from verification and continues over the
lifetime of the product:

aPhases: During selecting of service; prior to final selection, prior to full-scale fabri-
cation/delivery, during component functional test, during system functional test,
during end-to-end functional test, during operational test, during normal operation

Olivier de Weck (2015) Fundamentals of Systems Engineering (Lect. 9)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Life monitoring

Operation rules, qualification of operators
Maintenance cycle and regular checks
Recording and evaluation of minor failures
Scenarios to deal with failures and with partial failures
Life cycle of components
Replacement systems and spares
Options for reconfiguration, upgrades

Olivier de Weck (2015) Fundamentals of Systems Engineering (Lect. 9)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Complex Systems at NASA

System Engineering of Complex Systems is not well understood
System Engineering of Complex Systems remains challenging

System Engineering can produce elegant solutions in some
instances
System Engineering can produce embarrassing failures in some
instances
Within NASA, System Engineering is frequently unable to
maintain complex system designs within budget, schedule, and
performance constraints

“How do we Fix System Engineering?” (Michael Griffin, 2010)
Successful practice in System Engineering is frequently based
on the ability of the lead system engineer, rather than on the
approach of system engineering in general
The rules and properties that govern complex systems are not
well defined in order to define system elegance

Quoted from Michael D. Watson (2015) Complex Systems at NASA - Help from Natural Systems

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Complex Systems at NASA: Help from Natural Systems (?)
Complex engineered systems (star ship, submarine, computer)
Complex Adaptive Systems in nature (cells, ecology, weather)
Do complex systems follow the similar relationship rules?

Engineered systems
Big data in safe place
Minimise complexity
(parsimony principle)
Stability from rigidity
Single system (traditionally)
Hierarchy (typically)
Optimal (?)
Energy intense
Highly optimised tolerance

Natural systems
Some data in situ
Complexity can help
against adversaries
Stability from adaptivity
Population
Dynamic patterns
Viable (filling niche)
Energy efficient
Self-organised criticality

HOT (undesirable) and SOC (provides flexibility) are similar and a consequence
of the complex interaction (in a fundamentally different situation).

Arguing against Michael D. Watson (2015) Complex Systems at NASA - Help from Natural Systems

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Help from Natural Systems (!)

The differences do not imply that we cannot learn from nature, e.g.

What observables, principles, governance (as studied in
cybernetics)
Safety against attacks, immune system/firewall
Intra-system communication
Applications such as

multi-agent systems
colonisation of other planets
marine applications or agriculture, forestry etc.

may be more suitable for biologically-inspired approaches,
i.e. depends on task
Self-optimisation, -adaptation, -organisation

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Learning effective dynamics

More recently neural network approaches were considered for
testing, prediction and novelty detection
Multi-scale behaviour:

Recurrent networks for short term dynamics
LSTM for variable medium ranges
Feed-forward for long-term predictions by maps

Versatile, but largely not explainable

(to be discussed later)

see e.g. P.R. Vlachas (2022) Learning and forecasting the effective dynamics of complex systems across
scales (Doctoral dissertation, ETH Zurich).

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Conclusion

Verification and validation are the main connection between
theory and practice
We did not discuss today how to deal with any test data
Tests in complex systems are a complex issue
Risk and safety management need to include systems thinking

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Next topics

We’ll continue with additional topics on systems engineering, such
as

Confidence
Explainability
Scaling
Complexity
Heterogeneity

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh


