# Simulation, Analysis, and Validation of Computational Models

- Modelling -



### Lecturer: Michael Herrmann School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177

- Systems-level modeling
- Modelling
- Modelica
- Outlook

### Equations describe

- Different forms of energy: Acceleration, potential, friction
- Motion of matter: Air pressure and velocity
- Expectations and value: Option prices
- Input and output

### RW systems are described by

- Graphs, schemes, diagrams (boxology)
- Stories, experience, knowledge
- Mathematical constructs
- Modelling languages

- Increase of complexity requires tools to handle complexity
- Hierarchical, flexible, extensible, expressive, standardised
- Part count + source lines of code (Aerospace, automobile, electronic circuits)
  - 1960: 10<sup>3</sup> 10<sup>4</sup>
  - 1990: 10<sup>5</sup> 10<sup>6</sup>
  - 2010: 10<sup>8</sup> 10<sup>9</sup>
- Merging of modeling and programming

## Modelling languages vs. programming languages

- Programming languages are executable. They share many features with modelling: expressivity, heterogeneity, mechanisms of import and reuse, libraries, frameworks, hierarchies
- Modelling languages: Not directly executable (but are often translated into an executable programming language)
- Computational aspect are usually not considered in modelling, e.g. parallel and distributed computing
- Characteristic for modelling languages is "sketchiness" incl.
  - abstraction
  - underspecification/refinement
  - reduced precision and detailedness
  - compactness
  - views, relatedness to modelling domain

Gray & Rumpe (2022) Reflection on the differences between modeling and programming. Software and Systems Modeling 21:2097–2099

Michael Herrmann, School of Informatics, University of Edinburgh

- MBSE replaces documents with (executable) models
- Need System Modeling Languages
  - Ontology, semantics, syntax
  - Object-Process Methodology (OPM) Excellent for pre-Phase A
  - SysML Widely used in some industries, 9 diagram types
  - Modelica Declarative language, able to execute models in the time domain to simulate steady-state and transient behavior

## Main types

- Graphical modeling languages: Diagram techniques to describe structure of domain knowledge
- Textual modeling languages: keywords, parameters or natural language phrases

Computer-interpretable expressions can be generated from both

### Many variants

- Behavioral languages (process calculus or process algebra)
- Information and knowledge modeling
- VR modelling
- ...
- Examples: UML, Petri nets, EXPRESS, pseudo-code, ...

SAVM 2024/25

## Unified Modeling Language (UML)

- Modelling language for specification, construction, documentation and visualisation of software components, standardised by ISO/IEC 19505
- Specification of required and provided interfaces
- Independent of particular programming languages and development processes.
- Behavior diagrams, interaction diagrams, and structure diagrams: class, component, deployment, object, package, composite structure, profile, use case, activity, state machine, sequence, communication, interaction overview, timing





## Modelica

- Object-oriented modelling language, strongly typed
- Language for Cyber-Physical Systems
- Acausal modeling possible by mathematical functions
- Modelica Association (1997)
- Implementations: AMESim, CATIA Systems, Dymola, JModelica.org, MapleSim, Wolfram SystemModeler, Scicos, SimulationX, Xcos;

free and open source version: OpenModelica

 Alternatives: Simulink (Matlab), Scilab (numerics), GNU Octave (mathematical modelling), Inventor (3D CAD), SOLIDWORKS (finite elements), Autodesk (3D design)

## Simple First Order System in Modelica

model FirstOrderDocumented "A first order differential equation"
Real x "State variable";

equation

der(x) = 1-x "Drives value of x toward 1.0";

end FirstOrderDocumented;

model FirstOrderInitial "A first order differential equation"

Real x "State variable"; initial equation x=2; "Compute initial values"; equation

der(x) = 1-x "x approaches 1"; end FirstOrderDocumented;



https://mbe.modelica.university/behavior/equations/first\_order/

#### Michael Herrmann, School of Informatics, University of Edinburgh

### model BouncingBall "The 'classic' bouncing ball model"

type Height=Real(unit="m");

parameter Real e=0.8 "Coefficient of restitution";

```
parameter Height h0=1.0 "Initial height";
```

```
Height h "Height";
```

```
Velocity v(start=0.0, fixed=true) "Velocity";
```

initial equation





https://mbe.modelica.university/behavior/discrete/bouncing/

### Modelica: Advection

model Advection "advection equation"

parameter Real pi = Modelica.Constants.pi;

parameter DomainLineSegment1D omega(L = 1, N = 100) "domain";

field Real u(domain = omega) "field";

initial equation

u = sin(2\*pi\*omega.x) "IC";

equation

der(u) + pder(u,x) = 0 indomain omega "PDE";

u = 0 indomain omega.left "BC";

 $u = extrapolateField(u) \ indomain \ omega.right \ "extrapolation";$ 

end Advection;

SAVM 2024/25

### • https://playground.modelica.university

- Model: Unit in a hierarchical structure
- Variables, parameters, conditionals, predefined functions
- (differential) equations
- Connectors are ports that carry the value of a variable (not just a "class" but a connection to the RW), expresses meaning for variables and parameters
- Primarily equation-based
  - Assignment ( $E = m c^2$ ): naming r.h.s. "E", causality:  $\leftarrow$
  - Equality (*E* == *m c*<sup>2</sup>): to be solved either way acausal modeling

## Ontology

"An ontology encompasses a representation, formal naming, and definitions of the categories, properties, and relations between the concepts, data, or entities that pertain to one, many, or all domains of discourse."

A formal ontology shows the following properties:

- Indefinite expandability
- Remains consistent with increasing content.
- Content and context independence:
- Any kind of *concept* from the target domain finds its place.
- Accommodates different levels of granularity.

For Modelica this is still work in progress

https://eliseck.github.io/MO-x-IFC/TBox/MoOnt/index.html, https://en.wikipedia.org/wiki/Formal\_ontology

## System-level simulation

- Study global behavior of large cyber-physical systems
- Application of the holistic principle to computer simulation. Consider e.g.
  - Feedback in control, adaptation, learning
  - Realistic noise
  - Failure of components
  - Requirement verification
- In the system, not all components will cover their full behavioural repertoire
- Compare: Co-simulation of the system sub-parts
- Compare: Digital twins

## System-level simulation

- Modelling
  - Hybrid systems
  - Acausal modeling
  - Hardware-in-the-loop vs. software-in-the-loop
- Tasks (beyond testing
  - Dimensioning vs. efficiency
  - Refining specification vs. model order reduction
  - Optimization, calibration
- Modelling languages are not necessarily synchronous languages as have been developed for *reactive systems*

### Schematic of the solar thermal system model

| Component                                                            | Parameter                       | Catalog values               |
|----------------------------------------------------------------------|---------------------------------|------------------------------|
| Solar collector field,<br>consisting of 4 collectors                 | Aperture area                   | 5.355 m²                     |
|                                                                      | Efficiency co                   | 0.781                        |
|                                                                      | Efficiency curve coefficient c1 | 3.09 W/(m <sup>2</sup> ·K)   |
|                                                                      | Efficiency curve coefficient c2 | 0.0096 W/(m <sup>2</sup> ·K) |
|                                                                      | Incidence angle modifier        | 0.92                         |
| Primary pump                                                         | Maximum power                   | 430 W                        |
| Secondary pump                                                       | Maximum power                   | 80 W                         |
| Heat exchanger, overall<br>values for 2 heat<br>exchangers in series | Heat transfer coefficient       | 3408 W/(m <sup>2</sup> ·K)   |
|                                                                      | Surface area                    | 10.56 m <sup>2</sup>         |
|                                                                      | Nominal heat flow rate          | 180 kW                       |



Fontanella, (2012) Calibration and validation of a solar thermal system model in Modelica. *Building simulation* 5, 293-300. Tsinghua Press.

SAVM 2024/25

Michael Herrmann, School of Informatics, University of Edinburgh

### Calibration of the solar thermal system model



 $\varepsilon$ : effectiveness

Adjust model parameters (such as rate parameters, incident angle modifier) Optimise: Solar pumps and storage pump to maximise "heat flow effectiveness"

Fontanella, (2012) Calibration and validation of a solar thermal system model in Modelica. *Building simulation* 5, 293-300. Tsinghua Press.

Michael Herrmann, School of Informatics, University of Edinburgh

SAVM 2024/25

## Types of applications

- World models<sup>1</sup>: for climate, weather, migration, trade, transport, global diseases,
- Civil engineering (Infrastructure)
- (Mechanical and electrical) engineering: Automotive, aerial, space, production plants, cyber-physical systems
- Further engineering: Biological, chemical, interdisciplinary
- Fintech
- Scientific models
- Specialised models

<sup>1</sup>Differently used in biology and robotics for models of the environment. SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh

- 11 Case studies (week 8/1)
- 12 Modeling and simulation today (week 8/2)
- B1 PINN (week 6/2)
- B2 More on PINNs (week 9/1)
- B3 Industry 4.0 (week 9/2)
- B4 Digital twins (week 10/1)
- R Revision (week 10/2)