
Simulation, Analysis, and Validation of
Computational Models

— Modelling —

Lecturer: Michael Herrmann
School of Informatics, University of Edinburgh

michael.herrmann@ed.ac.uk, +44 131 6 517177



Overview

Systems-level modeling
Modelling
Modelica
Outlook

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Bridging between equations and high-level systems?

Equations describe RW systems are described by

Different forms of
energy: Acceleration,
potential, friction
Motion of matter: Air
pressure and velocity
Expectations and value:
Option prices
Input and output

Graphs, schemes,
diagrams (boxology)

Stories, experience,
knowledge
Mathematical constructs

Modelling languages

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Complexity

Increase of complexity requires tools to handle complexity
Hierarchical, flexible, extensible, expressive, standardised
Part count + source lines of code (Aerospace, automobile,
electronic circuits)

1960: 103 - 104

1990: 105 - 106

2010: 108 - 109

Merging of modeling and programming

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Modelling languages vs. programming languages

Programming languages are executable. They share many
features with modelling: expressivity, heterogeneity,
mechanisms of import and reuse, libraries, frameworks,
hierarchies
Modelling languages: Not directly executable (but are often
translated into an executable programming language)
Computational aspect are usually not considered in modelling,
e.g. parallel and distributed computing
Characteristic for modelling languages is “sketchiness” incl.

abstraction
underspecification/refinement
reduced precision and detailedness
compactness
views, relatedness to modelling domain

Gray & Rumpe (2022) Reflection on the differences between modeling
and programming. Software and Systems Modeling 21:2097–2099

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Model-based Systems Engineering

MBSE replaces documents with (executable) models
Need System Modeling Languages

Ontology, semantics, syntax
Object-Process Methodology (OPM) – Excellent for pre-Phase
A
SysML – Widely used in some industries, 9 diagram types
Modelica – Declarative language, able to execute models in the
time domain to simulate steady-state and transient behavior

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Modelling languages

Main types
Graphical modeling languages: Diagram techniques to describe
structure of domain knowledge
Textual modeling languages: keywords, parameters or natural
language phrases

Computer-interpretable expressions can be generated from both

Many variants
Behavioral languages (process calculus or process algebra)
Information and knowledge modeling
VR modelling
. . .

Examples: UML, Petri nets, EXPRESS, pseudo-code, . . .

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Unified Modeling Language (UML)

Modelling language for specification, construction,
documentation and visualisation of software components,
standardised by ISO/IEC 19505
Specification of required and provided interfaces
Independent of particular programming languages and
development processes.

Behavior diagrams,
interaction diagrams, and
structure diagrams: class,
component, deployment,
object, package, composite
structure, profile, use case,
activity, state machine,
sequence, communication,
interaction overview, timing Guido Zockoll, Axel Scheithauer & Marcel Douwe

Dekker (2009), CC BY-SA 3.0, curid=23052855

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Modelica

Object-oriented modelling language, strongly typed
Language for Cyber-Physical Systems
Acausal modeling possible by mathematical functions
Modelica Association (1997)
Implementations: AMESim, CATIA Systems, Dymola,
JModelica.org, MapleSim, Wolfram SystemModeler, Scicos,
SimulationX, Xcos;
free and open source version: OpenModelica
Alternatives: Simulink (Matlab), Scilab (numerics), GNU
Octave (mathematical modelling), Inventor (3D CAD),
SOLIDWORKS (finite elements), Autodesk (3D design)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Simple First Order System in Modelica

model FirstOrderDocumented "A first order differential equation"

Real x "State variable";

equation

der(x) = 1-x "Drives value of x toward 1.0";

end FirstOrderDocumented;

model FirstOrderInitial "A first order differential equation"

Real x "State variable";
initial equation

x=2; "Compute initial values";
equation

der(x) = 1-x "x approaches 1";
end FirstOrderDocumented;

https://mbe.modelica.university/behavior/equations/first_order/

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



model BouncingBall "The ’classic’ bouncing ball model"
type Height=Real(unit="m");

type Velocity=Real(unit="m/s");

parameter Real e=0.8 "Coefficient of restitution";
parameter Height h0=1.0 "Initial height";
Height h "Height";
Velocity v(start=0.0, fixed=true) "Velocity";

initial equation
h = h0;

equation
v = der(h);
der(v) = -9.81;
when h<0 then

reinit(v, -e*pre(v));
end when;

end BouncingBall;
https://mbe.modelica.university/behavior/discrete/bouncing/



Modelica: Advection

model Advection "advection equation"

parameter Real pi = Modelica.Constants.pi;

parameter DomainLineSegment1D omega(L = 1, N = 100)
"domain";

field Real u(domain = omega) "field";

initial equation

u = sin(2*pi*omega.x) "IC";

equation

der(u) + pder(u,x) = 0 indomain omega "PDE";

u = 0 indomain omega.left "BC";

u = extrapolateField(u) indomain omega.right "extrapolation";

end Advection;

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Modelica playground

https://playground.modelica.university

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Modelica language

Model: Unit in a hierarchical structure
Variables, parameters, conditionals, predefined functions
(differential) equations
Connectors are ports that carry the value of a variable (not
just a “class” but a connection to the RW), expresses meaning
for variables and parameters
Primarily equation-based

Assignment (E = mc2): naming r.h.s. “E ”, causality: ←
Equality (E == mc2): to be solved either way
acausal modeling

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Ontology

“An ontology encompasses a representation, formal naming, and
definitions of the categories, properties, and relations between the
concepts, data, or entities that pertain to one, many, or all domains
of discourse.”

A formal ontology shows the following properties:

Indefinite expandability
Remains consistent with increasing content.
Content and context independence:
Any kind of concept from the target domain finds its place.
Accommodates different levels of granularity.

For Modelica this is still work in progress

https://eliseck.github.io/MO-x-IFC/TBox/MoOnt/index.html,
https://en.wikipedia.org/wiki/Formal_ontology

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



System-level simulation

Study global behavior of large cyber-physical systems
Application of the holistic principle to computer simulation.
Consider e.g.

Feedback in control, adaptation, learning
Realistic noise
Failure of components
Requirement verification

In the system, not all components will cover their full
behavioural repertoire
Compare: Co-simulation of the system sub-parts
Compare: Digital twins

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



System-level simulation

Modelling
Hybrid systems
Acausal modeling
Hardware-in-the-loop vs. software-in-the-loop

Tasks (beyond testing
Dimensioning vs. efficiency
Refining specification vs. model order reduction
Optimization, calibration

Modelling languages are not necessarily synchronous languages
as have been developed for reactive systems

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



System-level simulation: Example

Schematic of the solar thermal system model

Fontanella, (2012) Calibration and validation of a solar thermal system model in Modelica. Building
simulation 5, 293-300. Tsinghua Press.

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



System-level simulation: Example

Calibration of the solar thermal system model

ε: effectiveness

Adjust model parameters
(such as rate parameters,
incident angle modifier)
Optimise: Solar pumps and
storage pump to maximise
“heat flow effectiveness”

Fontanella, (2012) Calibration and validation of a solar thermal system model in Modelica. Building
simulation 5, 293-300. Tsinghua Press.

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Types of applications

World models1: for climate, weather, migration, trade,
transport, global diseases,
Civil engineering (Infrastructure)
(Mechanical and electrical) engineering: Automotive, aerial,
space, production plants, cyber-physical systems
Further engineering: Biological, chemical, interdisciplinary
Fintech
Scientific models
Specialised models

1Differently used in biology and robotics for models of the environment.
SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Remaining topics

11 Case studies (week 8/1)

12 Modeling and simulation today (week 8/2)

B1 PINN (week 6/2)

B2 More on PINNs (week 9/1)

B3 Industry 4.0 (week 9/2)

B4 Digital twins (week 10/1)

R Revision (week 10/2)

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh


