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Last time: Physics-informed neural networks

Physics-informed ML
Efficient machine learning
Physics-informed
reinforcement learning,
active learning
Physics-informed
regularisation

Understanding system
physics

Qualitative modelling
by identification of
underlying regularities
Learning to simulate
complex phenomena
from sparse data based
on physics priors
(PDE).
Closed loop systems to
perform process
optimization

see e.g. https://www.youtube.com/watch?v=ISp-hq6AH3Q
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Neural networks

Hardware:
1 Generation of NN (1958):

Electronic computers
2 Gen. NN (1986): VLSI
3 Gen. NN (2012): GPUs

Function approximation, data
generation, novelty detection

Hyperparameters: Batch size, learning rate, regularisation, unit
type, architecture, cost function
Problems:

High sample complexity and long training time
Efficiency, complexity, theory, verifiability
Explainabilty, unlearnability, robustness to adversarial attacks
Insight, understanding, intelligence
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Physics

Physics is the study motion and behavior of matter in space
and time.
Reduction of the RW complexity to essential and repeatable
aspects.
Regularity of continuous trajectories (or probabilities or wave
functions) can be described by differential equations which are
usually derived from the principle of least action.
In addition to dynamics, also symmetry and conservation laws
can be incorporated.
Extrapolation of known regularities can be used to make
testable predictions, which may lead to an insight in more
complex regularities.

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Weather and climate modelling

Esmaeilzadeh e.a. (2020) MeshFreeFlowNet: A physics-constrained deep continuous space-time
super-resolution framework. In SC20: Int. Conf. HPCNSA, p. 1-15.

see also Kashinath e.a. (2021) APhysics-informed machine learning: case studies for weather and
climate modelling. Phil. Trans. R. Soc. A379, 202000093.

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



What is a physics-informed neural network?

Machine learning can solve a scientific problem using data
alone.
Do these algorithms “understand” the scientific problems they
are trying to solve?
Minimising MSE of NN output and true values

min
1
N

N∑
i=1

(uNN (xi , θ)− utrue (xi ))
2

does not mean that the neural network can generalise well.
The question is not how to improve generalisation, but to
describe sets of possible data, e.g. for temporal data by a
relation

ẋ = F (x)

Ben Moseley (https://benmoseley.blog)
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PINN

Big data (by definition): all relevant structure can be inferred
from the data
Small data can be as useful, if underlying principles (“physics”)
are known (e.g. as initial values)
What can be achieved for “some data” with “some physics”?

Add the known differential equations directly into the loss
function when training the neural network.

m
d2u

dx2
+ µ

du

dx
+ ku = 0 and

1
N

∑
i

(uNN (xi )− ui )
2

PINN started 2017, but there is earlier work of similar flavour.

Lagaris (1998) Artificial Neural Networks for Solving Ordinary and Partial Differential Equations.
IEEE Transact. Neural Networks 9, 987

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



PINN
Given: PDE ∂u

∂t = −u ∂u
∂x + v ∂2u

∂x2 and data (xi , ti , ui ), i = 1, . . . ,Ndata

Loss: L = wdataLdata+wPDELPDE where wdata and wPDE are weights and

Ldata=
1

Ndata

Ndata∑
i=1

(u(xi , ti )−ui )2, LPDE=
1

NPDE

NPDE∑
j=1

(
∂u

∂t
+u

∂u

∂x
−v ∂

2u

∂x2

)2
∣∣∣∣∣
x=xj (t)

Adapted from Karniadakis (2021) Physics-informed
machine learning. Nat. Rev. Phys. 3, 422
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PINN: Remarks

Given: PDE ∂u
∂t = −u ∂u

∂x + v ∂2u
∂x2 and data (xi , ti , ui ), i = 1, . . . ,Ndata

Loss: L = wdataLdata+wPDELPDE where wdata and wPDE are weights and

Ldata=
1

Ndata

Ndata∑
i=1

(u(xi , ti )−ui )2, LPDE=
1

NPDE

NPDE∑
j=1

(
∂u

∂t
+u

∂u

∂x
−v ∂

2u

∂x2

)2
∣∣∣∣∣
x=xj (t)

PDE data (xj , tj) can be different from training data (xi , ti , ui ).
E.g. trivial case: Ndata = 1 just check whether initial value is met.

Trust in PDE and in data can be in different (weights!).
Error components can be in different ranges (weights!).
PDE and data can be spatially heterogeneous.
PDE and data have different stiffness (Edit PDE?)

Karniadakis (2021) Physics-informed machine learning. Nat. Rev. Phys. 3, 422
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Automatic differentiation

Numerical differentiation: Calculate differences between
data points. As this tends to amplify errors, it is usually
combined with a smoothing scheme, e.g. “five-point stencil”:

df (x)

dx
≈ −f (x + 2h) + 8f (x + h)− 8f (x − h) + f (x − 2h)

12h

Symbolic differentiation: Manipulation of expressions by
rewriting rules e.g. h(g(x))′ = h′(g(x)) · g ′(x).
Automatic differentiation1: Computational form of symbolic
differentiation that emphasises computability. Classic example:

d tanh x

dx
= 1− x2

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Automatic differentiation

A function y = f [x ] (in any programming language) receives
argument x and returns the value y .
In addition, another function calculates

dy

dx
=

f [z ]

dz

∣∣∣∣
z=x

Represent f as computational graph and calculate derivative by

δwi =
∑

j∈{predecessors of i}

∂wi

∂wj
δwj

Focus on “computational” functions (cos, exp, tanh etc.)
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Automatic differentiation: Example

y = f (x1, x2) = x1x2 + sin x1

= w1w2 + sinw1

= w3 + w4

= w5

dy

dx1
= x2 + cos x1

Construct a corresponding structure for a computational derivative.
Seed determines what derivative is taken (here x1)

value derivative
w1 = x1 δw1 = 1 (seed)
w2 = x2 δw2 = 0 (seed)
w3 = w1 · w2 δw3 = w2 · δw1 + w1 · δw2

w4 = sinw1 δw4 = cosw1 · δw1

w5 = w3 + w4 δw5 = δw3 + δw4
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Automatic differentiation: Pseudocode

<float,float> evaluate_derive(expr Z, var V) {
if is_var(Z)

if (Z = V) return {value_of(Z), 1};
else return {value_of(Z), 0};

else if (Z = A + B)
{a, da} = evaluate_derive(A, V);
{b, db} = evaluate_derive(B, V);
return {a + b, da + db};

else if (Z = A - B)
{a, da} = evaluate_derive(A, V);
{b, db} = evaluate_derive(B, V);
return {a - b, da - db};

else if (Z = A * B)
{a, da} = evaluate_derive(A, V);
{b, db} = evaluate_derive(B, V);
return {a * b, b * da + a * db};

}
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PINN for learning equations from scarce data

Chen e.a. (2021) Physics-informed learning of governing equations from scarce data. Nature comm. 12,
6136.
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PINN for learning equations from scarce data

(a) Burgers equation, (b) Kuramoto-Sivashinsky equation, (c) nonlinear Schrödinger
equation, (d) Navier-Stokes equation, and (e) λ− ω reaction-diffusion equations.
Sparsely sampled measurement data has 10% noise.

Chen e.a. (2021) Physics-informed learning of governing equations from scarce data. Nature comm. 12,
6136.
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PINNs: Further benefits

Ill-posed and inverse problems.
Scalability when combined with domain decomposition
Search for new intrinsic variables and representations
Incorporate conservation laws

Karniadakis (2021) Physics-informed machine learning. Nat. Rev. Phys. 3, 422

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



PINNs: Limitations (and amendments)
Discontinuous behavior: piecewise PINNs
Translation and advective dominance (“wind”) require special
tuning, as all systems with strongly different time scales:
Distributed PINNs
Soft constraints may require re-weighing the loss terms.
Chaotic systems remain chaotic and their prediction is limited
(high precision simulations of deterministic systems can be
impressively predictable by PINNs).
PINNs need to be informed: More general differential
equations can be used or by Genetic Programming.
Can get stuck in local optima like any other optimisation
method.
Grid-based numerical solvers are quicker in forward problems.
Limited to physics: CINNs, BINNs, LINNs have been proposed
and tested.

Rout (2021) Numerical approximation in CFD problems using physics informed machine learning. (arxiv)
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Open problems

Domain decomposition
Phase transitions
Combination of physics with other information (e.g. boundary
conditions)
Incorporation of non-physics laws (such as Black Scholes)
Causality
Efficiency
Theory of PINN: Validation

Cuomo e.a. (2022) Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. J. Scient. Comput. 92, 88.
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Conclusion

PINNs can provide reasonable extrapolations of data and in
this respect perform better than standard neural networks.
It could seem as if PINN have an understanding of the
underlying physical principles which is no surprise as this
information was made available to the PINN in the first place.
Including existing physical principles into machine learning
leads to more versatile models, nontrivial predictions, and thus
can help to improve scientific understanding.
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Next topics

Next week
Testing
Validation
Verification
Confidence

Next bonus lecture
Connections to kernel
methods
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