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Overview

Modelling weather
Modelling climate
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Weather vs. climate

Weather is the state of the atmosphere (troposphere <20km)
and depends on

Atmospheric circulation (wind, jet stream)
Fluctuations of oceanic currents (El niño, el niña)
Dust particles (Pinatubo volcano (1991) -0.4 deg)

Climate is the average weather over many years and depends
on the state of the surface of the earth (air, water, ice, carbon,
methane, biosphere, atmosphere <500km)

Geographic features
Solar irradiance (and space weather)

Special cases:
Micro climate (walled garden, cave, afforestation)
Long-term weather prediction: Reoccurring patterns
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The story of the butterfly effect

Digital computer (Royal McBee LGP-30) to simulate
temperature, wind speed etc. by modeling 12 variables (1961)
Re-started simulation in the middle of its run by re-entering
data from a printout.
Surprisingly, the prediction was now completely different from
the previous calculation, because of rounding a decimal
number from 6-digit precision to 3-digits.
The consensus at the time would have been that it should
have no practical effect. However, Lorenz discovered that
small changes in initial conditions produced large changes in
long-term results.
“Two states differing by imperceptible amounts may eventually
evolve into two considerably different states ...” Edward
Lorenz (who coined the notion of the butterfly effect).

https://en.wikipedia.org/wiki/Edward_Norton_Lorenz
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Atmospheric circulation

Frokor (Commons)
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Classical weather prediction

Over various ranges, precise predictions limited to 7 - 14 days
chaotic dynamics + noise
measurement precision
surface grid density
height resolution (atmospheric layering)
cost, capacity, subgrid parametrisation, knowledge
representation

Exceptional events are less likely to be predicted correctly both
for analytical and statistical methods

Power-law event distribution
Less frequent in historical data so far
Extreme weather warnings on short time scales
Risk estmation is an important research topic
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Numerical weather prediction

Linear combinations of predictors Xi to estimate predicant Ŷ
(random variables)

Ŷ = a0 + a1X1 + · · ·+ akXk

determine ai by minimising RMSE of a set of predicted values
and respective observations

1
N

N∑
j=1

(yj − ŷj)

Calculation over surface grid
Model output statistics based on multiple linear regression as
an ensemble method as proxy for probability (requires
post-processing to remove biases)

Glahn & Lowry (1972) The use of model output statistics (MOS)
in objective weather forecasting. J. Appl. Meteorol. 11, 1203-1211.
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Classical weather prediction

Global models on 10 km – 50 km grid cells
Limited area model with 1 – 15 km grid cells
6h interval (Global Forecast System, GFS)
E.g. Unified Model (UM) Met Office (UK):

36-hour forecasts from the operational 1.5 km resolution
48-hour forecasts from 12 km grid (North Atlantic)
144-hour forecasts from 25 km grid (global)

Uncertainly is evaluated by ensemble algorithms with 50 -
1000 instances (at different resolutions and with noisy
initialisation): long term prognosis possible at agreement.
Tools: Navier-Stokes equation, ideal gas law (p · V = const),
first law of thermodynamics (∆U = Q − P ∆V ), continuity
equations, radiative transfer, statistical postprocessing
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Mathematical background

Navier Stokes equation describes the momentum balance

ρ

(
∂v
∂t

+ (v · ∇)v
)

= −∇p + µ∆v + (λ+ µ)∇(∇ · v) + f.

v flow velocity, p pressure, ρ density, λ volume viscosity , µ
dynamic viscosity , f gravity and Coriolis force per volume
Stokes equation (creeping flow, friction > inertia)

0= −∇p + µ∆v + f

Euler equation (no viscosity: λ = µ = 0, no vertices)

ρ
∂v
∂t

+ ρ (v · ∇)v︸ ︷︷ ︸
convection

= −∇p + f
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Derivatives in 3D

∇ nabla (scalar to vector)

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
∆ Laplace (scalar (to vector) to scalar)

∆ =

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
or as a (formal) scalar product ∇ · ∇ = ∆

∇ · v =

(
∂

∂x
vx +

∂

∂y
vy +

∂

∂z
vz

)
(vector to scalar)

∇× v (vector to vector), Hessian: ∇∇v (scalar to matrix)
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Interpretation of the Navier Stokes equation

Parabolic equation differential equation
Applicable to Newtonian fluids where viscous stresses are
proportional to the rate of change of the fluid’s velocity vector.
Arise from applying Isaac Newton’s second law to fluid motion
(momentum, force, friction)
Explain transition from laminar flow to turbulence and
formation of boundary layers
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Navier–Stokes existence and smoothness problem

Find a proof or a
counter-example that in 3D
plus time, given an initial
velocity field, there exists a
vector velocity and a scalar
pressure field, which are both
smooth and globally defined,
that solve the Navier–Stokes
equations.

(Clay Math. Inst.)
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Long-range weather forecast

medium range (up to 15 days ahead);
extended range (up to 46 days ahead)
long range (up to one year ahead).

Forecasts and predictability in the long range, e.g. based on pattern
recognition:

:::::
Cyclic sea surface temperature change, every “few” years in the
central-east equatorial Pacific (El Niño: +0.5 deg, La Niña
-0.5 deg)

European Centre for Medium Range Weather Forecasts
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Machine learning approaches

Machine learning approaches may be suboptimal
System behavior dominated by spatial or temporal context
Amending machine learning or focus on contextual cues for
seasonal forecasting and modeling of long-range spatial
connections across multiple time-scales?
Hybrid approach coupling physical processes with deep
learning.

Testing ML against complex physical models based on
surrogate data from physics models
Testing theoretical assumptions (parametrisation or interaction
strengths) by ML
Critical evaluation of data acquisition

Reichstein e.a. (2019) Deep learning and process understanding for data-driven Earth system science.
Nature 566, 195-204.
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GraphCast

10-day forecasts in < 1min on a TPUv4
36.7 M parameters in GNN (better scalable than transformers)
1M grid points (0.25◦×0.25◦) as compared to (0.1◦×0.1◦) of
alternative approaches
Pre-training: 4 weeks on 32 TPUv4’s using 39 years
(1979–2017) of historical data from ECMWF (European
Centre for Medium-Range Weather Forecasts), open source
Autoregressive training regime: model predicted step used as
input for predicting this step.
Severe event forecasting improveable; outperforming ECMWF
Trained using atmospheric data. Also possible to use
agricultural data to predict harvests; ecology data to predict
deforestation and biodiversity etc.
Deterministic forecasts: Less suited to manage uncertainty

Rémi Lam e.a. (2022) GraphCast: Learning skillful medium-range global weather forecasting.
arXiv:2212.12794.
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Numerical climate models

Similar to weather forecast models
Discretisation
Several ranges
Regional or global

Different
Time scales
Short-range changes (weather) is averaged-out
Less dependent on current data, but several other features are
incorporated (such as ice sheet data, vegetation, human
activity)

Some models are used for both weather and climate predictions

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



What is a climate model?

H. Goosse (2015) Climate system dynamics and modeling. Cambridge U Press.
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Energy balance models

Solar irradiation (latitude, altitude, weather, air quality)
Diffusion to space (albedo, latitude, altitude, weather, air
quality)
Lateral energy transport (latitude, distance to sea currents)
Storage (vegetation, agriculture)
Energy sources (urbanisation, transport, air traffic)
Interaction of multiple factors

SAVM 2024/25 Michael Herrmann, School of Informatics, University of Edinburgh



Zero-dimensional models

(1− a)S = 4εσT 4

S incoming solar radiation per unit area

a Earth’s average albedo,

TEarth’s average surface temperature

ε effective emissivity of Earth’s

σ Stefan–Boltzmann constant

Mechanisms: Increase albedo to decrease temperature?
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Complex climate models

General agreement on
some features of future
climate, divergence on
many details
Scenarios rather than
prognosis
Models can be correct
now, but fail in the past
Sudden changes (ice core
data) are problematic
Complexity
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Physics-informed neural networks

Physics-informed ML
Efficient machine learning
Physics-informed
reinforcement learning,
active learning
Physics-informed
regularisation

Understanding system
physics

Qualitative modelling
by identification of
underlying regularities
Learning to simulate
complex phenomena
from sparse data based
on physics priors
(PDE).
Closed loop systems to
perform process
optimization

see e.g. https://www.youtube.com/watch?v=ISp-hq6AH3Q
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Conclusion

Weather prediction started with modest tools, but gained
fundamental insights early on
Weather forecast and modeling of climate changes seem to be
similar, but the learning problem is different
Combination of physics models and machine learning is
essential
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Next topics

Testing
Validation
Verification
Confidence
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