

Table C.3 — Relationship between *hazards*, foreseeable sequences of events, *hazardous situations* and the *harm* that can occur

Hazard	Foreseeable sequence of event	s Hazardous situation	Harm
Electromagnetic energy (high voltage)	(1) Electrode cable unintentionally plugged into power line receptac	Line voltage appears on electrodes	Serious burns Heart fibrillation
Chemical (volatile solvent, embolus)	 Incomplete removal of volatile solvent used in manufacturing Solvent residue converts to gas a body temperature 	Development of gas embolism (bubbles in the blood stream) during dialysis	Infarct Brain damage
Biological (mi- crobial contam- ination)	 (1) Inadequate instructions provide for decontaminating re-used anaesthesia tubing (2) Contaminated tubing used during anaesthesia 	airway of patient during anaesthesia	Bacterial infection
Functionality (no delivery)	 Electrostatically charged patien touches infusion pump Electrostatic discharge (ESD) ca pump and pump alarms to fail 	to patient with elevated blood glucose level, no	Minor organ damage Decreased conscious- ness
Functionality (no output)	 Implantable defibrillator battery reaches the end of its useful life Inappropriately long interval between clinical follow-up visits 	deliver shock when an arrhythmia occurs	Death
Measurement (incorrect information)	(1) Measurement error(2) No detection by user	Incorrect information reported to clinician, leading to misdiagnosis and/or lack of proper therapy	Progression of disease Serious injury

Table C.1 — Risk management and AI system life cycle

→ Risk management	AI risk manage- ment framework (Clause 5)					
AI system Life cycle↓		Scope, context and criteria	Risk assessment	Risk treatment	Monitoring and review	Recording and reporting
Organizational level activities related to risk management	Governing body sets directions for AI risk man- agement.	Feedback reports from Al systems' risk management processes are being received and processed. As a result, the organizational risk management framework is being improved by extending and refining of the organization's risk management tools:				
	Top manage- ment commits. High-level risk management appetite and general criteria are established.	A catalogue of risk criteria.	A catalogue of po- tential risk sources. A catalogue of techniques for risk sources' assess- ment and meas- urements.	known or imple-	of known or implemented techniques for monitoring and	A catalogue of estab- lished methods and defined formats for tracing, recording, reporting, and shar- ing the information about AI systems with internal and external stakeholders.
Inception	system objectives in the context of	The AI system risk management process and the system's risk criteria are established through customization of the organization for the organizament framework.	Risk sources specific to the AI system are identified (potentially in a multi-layered manner) and described in detail.	treatment plan is		The analysis with its results and the recommendation are recorded and communicated to the top management.
Design and development	Governing body continually re-as- sesses the objec- tives, the efficacy and the feasibili- ty of the system based on received feedback reports.	Potentially, the AI system risk criteria is modified as a re- sult of the feedback reports.	ment is performed continuously (po-	The risk treatment plan is implemented. The risk treatment and the (remaining) risks assessment continue until the established risk criteria are met.	and validation	corded and fed back to the relevant risk management process activities.
Verification and val- idation						

Table C.1 (continued)

→ Risk management	AI risk manage- ment framework (Clause 5)	Al risk management process (<u>Clause 6</u>)				
AI system Life cycle↓		Scope, context and criteria	Risk assessment	Risk treatment	Monitoring and review	Recording and re- porting
Deployment	continually re-as- sesses the ob- jectives and the feasibility of the	The AI system risk criteria and the risk management process are adjusted for the necessary "configuration" changes.	ment is performed continuously (po- tentially on multi-	ment plan is po- tentially updated due to "configura-	The AI system's risk treatment plan is being re-assessed to allow for neces- sary adjustments.	
Operation, monitoring Continuous validation	continually re-as- sesses the ob-	Potentially, the AI system risk criteria is modified as a re- sult of the feedback reports.	assessment plan is potentially adjust-	treatment plan is potentially adjust-	system's compo- nents is assessed	
Re-evaluation	re-examines the AI system objec- tives and their relation to the organization's and the stakeholders'	The AI system risk management process and the system's risk criteria are re-evaluated against any potential changes to the specific purpose and scope of the AI system, outcome of operation monitoring and new regulatory requirements	risk sources specific to the AI system are examined for relevance and any possible gaps.	ment plan is po-	The AI system's risk treatment plan is being re-assessed to allow for neces- sary adjustments.	
Retirement or re- placement Triggers a new risk management process with new objectives, risks and their miti- gation.	re-examines the AI system objec- tives based on	The AI system risk management retire- ment process and the system's retire- ment risk criteria are established.	cific to the AI sys- tem retirement are identified and	treatment plan is		

Figure 1 — Overview of the ISO 26262 series of standards

Figure 2 — State machine model of automotive risk

Table 1 — Safety goals resulting from the same hazard in different situations

Failure mode	Hazard	Specific situation	Hazardous event	Possible consequences	ASIL	Safety goal	Safe state
Unintend- ed parking brake activation	Unexpected deceleration	High speed OR taking a bend OR low friction surface	Unexpected deceleration at high speed OR taking a bend OR low friction surface	Loss of vehicle stability	Higher ASIL	Avoid activating the parking func- tion without the driver's request when the vehicle is moving	EPB disabled
Unintend- ed parking brake activation	Unexpected deceleration	Medium-low speed AND high friction surface	ed decel-	Rear end collision with the following vehicle	Lower ASIL	Avoid activating the parking func- tion without the driver's request when the vehicle is moving	EPB disabled

PD ISO/IEC TR 5469:2024

Artificial intelligence — Functional safety and AI systems

ISO/IEC TR 5469:2024(en)

LD IOO/IEC IV DA02.70

Figure B.2 — Example of industrial mobile robot

Based on the principles described in Clause 8, the properties addressed by the AI components are:

- Specifiability: What are the requirements of the network? How do those requirements map to existing International Standards for safety sensors, such as IEC 61496-1[144] and IEC TS 62998-1[143]? What constitutes the training images for the neural network, how are those images mapped to the operating environment? How many images, across different classes, are sufficient for training?
- Domain shift: What if the deployment environment is different from the environment used during training?
- Verifiability: How is the neural network performance assessed? How does this assessment map to
 existing International Standards for safety sensors, such as IEC 61496-1[144] and IEC TS 62998-1[143]?
- Robustness: How robust is the neural network to perturbation of the input data due to different causes (hardware, environmental factors, operational changes, ageing, etc.)?
- Interpretability: Are the results produced by the network understandable? Do the produced results correspond to the expected results, as defined by the safety requirements?
- Transparency: Are the components that make up the machine learning model understood? Is there a reason for design choices? Do those choices map to input requirements?

Table B.3 — Mapping of properties to the realization principle stages

	Acquisition from inputs or data	Knowledge induction from training data and human knowledge	Processing and genera- tion of outputs
Specifiability	X	X	X
Domain shift	-	X	X
Verifiability		X	X
Robustness	X	2	X
Interpretability		X	X
Explainability	-	X	-

Table B.4 — Example property analysis

Stage: processing and generation o	foutputs			
Desirable property: verifiability	200			
Topic	Details	Compliance criteria		
How is the neural network performance assessed?	 For a given input, definition of what constitutes a "correct" output by the network. 			
	 Definition of what range of inputs is evaluated. 	Sequence level KPIs. Data set level KPIs.		
How does the network perfor- mance map to existing safety International Standards and metrics?	 Mapping of measured network performance criteria to existing standard criteria. Requirement tracing from standards performance requirements to network requirements. 	mapping documents.		
How to determine verification process is accurate (e.g. unexpected behaviour due to combination of factors that cannot be seen by testing across single factors)?	 Single-dimensional vs multi-dimensional testing. Statistical analysis of random variate testing. Independent verification process. Evaluation and or certification of verification tools 	Independently reviewed results. Statistical analysis. Tool qualification		
How to determine when verification is complete?	Amount of verification data Type of verification data and how it's split into relevant parameters Frequency with which verification is carried out	criteria		