Table C.3 — Relationship between *hazards*, foreseeable sequences of events, *hazardous situations* and the *harm* that can occur | Hazard | Foreseeable sequence of event | s Hazardous situation | Harm | |--|---|--|--| | Electromagnetic energy (high voltage) | (1) Electrode cable unintentionally plugged into power line receptac | Line voltage appears on electrodes | Serious burns
Heart fibrillation | | Chemical (volatile solvent, embolus) | Incomplete removal of volatile solvent used in manufacturing Solvent residue converts to gas a body temperature | Development of gas embolism (bubbles in the blood stream) during dialysis | Infarct
Brain damage | | Biological (mi-
crobial contam-
ination) | (1) Inadequate instructions provide
for decontaminating re-used
anaesthesia tubing (2) Contaminated tubing used during
anaesthesia | airway of patient during
anaesthesia | Bacterial infection | | Functionality
(no delivery) | Electrostatically charged patien
touches infusion pump Electrostatic discharge (ESD) ca
pump and pump alarms to fail | to patient with elevated blood glucose level, no | Minor organ damage
Decreased conscious-
ness | | Functionality
(no output) | Implantable defibrillator battery reaches the end of its useful life Inappropriately long interval between clinical follow-up visits | deliver shock when an arrhythmia occurs | Death | | Measurement (incorrect information) | (1) Measurement error(2) No detection by user | Incorrect information reported to clinician, leading to misdiagnosis and/or lack of proper therapy | Progression of disease
Serious injury | Table C.1 — Risk management and AI system life cycle | → Risk management | AI risk manage-
ment framework
(Clause 5) | | | | | | |---|--|--|---|---|--|---| | AI system
Life cycle↓ | | Scope, context
and criteria | Risk assessment | Risk treatment | Monitoring and review | Recording and reporting | | Organizational
level activities
related to risk
management | Governing body
sets directions
for AI risk man-
agement. | Feedback reports from Al systems' risk management processes are being received and processed. As a result, the organizational risk management framework is being improved by extending and refining of the organization's risk management tools: | | | | | | | Top manage-
ment commits.
High-level risk
management
appetite and
general criteria
are established. | A catalogue of risk criteria. | A catalogue of po-
tential risk sources.
A catalogue of
techniques for risk
sources' assess-
ment and meas-
urements. | known or imple- | of known or
implemented
techniques for
monitoring and | A catalogue of estab-
lished methods and
defined formats for
tracing, recording,
reporting, and shar-
ing the information
about AI systems with
internal and external
stakeholders. | | Inception | system objectives in the context of | The AI system risk management process and the system's risk criteria are established through customization of the organization for the organizament framework. | Risk sources specific to the AI system are identified (potentially in a multi-layered manner) and described in detail. | treatment plan is | | The analysis with its results and the recommendation are recorded and communicated to the top management. | | Design and development | Governing body
continually re-as-
sesses the objec-
tives, the efficacy
and the feasibili-
ty of the system
based on received
feedback reports. | Potentially, the AI
system risk criteria
is modified as a re-
sult of the feedback
reports. | ment is performed
continuously (po- | The risk treatment plan is implemented. The risk treatment and the (remaining) risks assessment continue until the established risk criteria are met. | and validation | corded and fed back
to the relevant risk
management process
activities. | | Verification and val-
idation | | | | | | | Table C.1 (continued) | →
Risk
management | AI risk manage-
ment framework
(Clause 5) | Al risk management process (<u>Clause 6</u>) | | | | | |---|--|---|--|---|---|------------------------------| | AI system
Life cycle↓ | | Scope, context
and criteria | Risk assessment | Risk treatment | Monitoring and review | Recording and re-
porting | | Deployment | continually re-as-
sesses the ob-
jectives and the
feasibility of the | The AI system risk criteria and the risk management process are adjusted for the necessary "configuration" changes. | ment is performed
continuously (po-
tentially on multi- | ment plan is po-
tentially updated
due to "configura- | The AI system's
risk treatment
plan is being
re-assessed to
allow for neces-
sary adjustments. | | | Operation, monitoring Continuous validation | continually re-as-
sesses the ob- | Potentially, the AI
system risk criteria
is modified as a re-
sult of the feedback
reports. | assessment plan is
potentially adjust- | treatment plan is
potentially adjust- | system's compo-
nents is assessed | | | Re-evaluation | re-examines the
AI system objec-
tives and their
relation to the
organization's and
the stakeholders' | The AI system risk management process and the system's risk criteria are re-evaluated against any potential changes to the specific purpose and scope of the AI system, outcome of operation monitoring and new regulatory requirements | risk sources specific to the AI system are examined for relevance and any possible gaps. | ment plan is po- | The AI system's
risk treatment
plan is being
re-assessed to
allow for neces-
sary adjustments. | | | Retirement or re-
placement Triggers a new risk management process with new objectives, risks and their miti-
gation. | re-examines the
AI system objec-
tives based on | The AI system risk
management retire-
ment process and
the system's retire-
ment risk criteria
are established. | cific to the AI sys-
tem retirement
are identified and | treatment plan is | | | Figure 1 — Overview of the ISO 26262 series of standards Figure 2 — State machine model of automotive risk Table 1 — Safety goals resulting from the same hazard in different situations | Failure
mode | Hazard | Specific situation | Hazardous
event | Possible consequences | ASIL | Safety goal | Safe
state | |--|----------------------------|--|--|---|----------------|--|-----------------| | Unintend-
ed parking
brake
activation | Unexpected
deceleration | High speed OR taking a bend OR low friction surface | Unexpected deceleration at high speed OR taking a bend OR low friction surface | Loss of vehicle stability | Higher
ASIL | Avoid activating
the parking func-
tion without the
driver's request
when the vehicle
is moving | EPB
disabled | | Unintend-
ed parking
brake
activation | Unexpected
deceleration | Medium-low
speed AND
high friction
surface | ed decel- | Rear end collision with the following vehicle | Lower
ASIL | Avoid activating
the parking func-
tion without the
driver's request
when the vehicle
is moving | EPB
disabled | PD ISO/IEC TR 5469:2024 Artificial intelligence — Functional safety and AI systems ISO/IEC TR 5469:2024(en) LD IOO/IEC IV DA02.70 Figure B.2 — Example of industrial mobile robot Based on the principles described in Clause 8, the properties addressed by the AI components are: - Specifiability: What are the requirements of the network? How do those requirements map to existing International Standards for safety sensors, such as IEC 61496-1[144] and IEC TS 62998-1[143]? What constitutes the training images for the neural network, how are those images mapped to the operating environment? How many images, across different classes, are sufficient for training? - Domain shift: What if the deployment environment is different from the environment used during training? - Verifiability: How is the neural network performance assessed? How does this assessment map to existing International Standards for safety sensors, such as IEC 61496-1[144] and IEC TS 62998-1[143]? - Robustness: How robust is the neural network to perturbation of the input data due to different causes (hardware, environmental factors, operational changes, ageing, etc.)? - Interpretability: Are the results produced by the network understandable? Do the produced results correspond to the expected results, as defined by the safety requirements? - Transparency: Are the components that make up the machine learning model understood? Is there a reason for design choices? Do those choices map to input requirements? Table B.3 — Mapping of properties to the realization principle stages | | Acquisition from inputs or data | Knowledge induction
from training data and
human knowledge | Processing and genera-
tion of outputs | |------------------|---------------------------------|--|---| | Specifiability | X | X | X | | Domain shift | - | X | X | | Verifiability | | X | X | | Robustness | X | 2 | X | | Interpretability | | X | X | | Explainability | - | X | - | Table B.4 — Example property analysis | Stage: processing and generation o | foutputs | | | | |---|---|--|--|--| | Desirable property: verifiability | 200 | | | | | Topic | Details | Compliance criteria | | | | How is the neural network performance assessed? | For a given input, definition of what
constitutes a "correct" output by the
network. | | | | | | Definition of what range of inputs is evaluated. | Sequence level KPIs. Data set level KPIs. | | | | How does the network perfor-
mance map to existing safety
International Standards and
metrics? | Mapping of measured network performance criteria to existing standard criteria. Requirement tracing from standards performance requirements to network requirements. | mapping documents. | | | | How to determine verification process is accurate (e.g. unexpected behaviour due to combination of factors that cannot be seen by testing across single factors)? | Single-dimensional vs multi-dimensional testing. Statistical analysis of random variate testing. Independent verification process. Evaluation and or certification of verification tools | Independently reviewed results. Statistical analysis. Tool qualification | | | | How to determine when verification is complete? | Amount of verification data Type of verification data and how it's split into relevant parameters Frequency with which verification is carried out | criteria | | |