
Good Code

Perdita Stevens

School of Informatics
University of Edinburgh

Plan

I What does it mean for code to be good?

I Why is it important?

I Why isn’t it enough?

Context (personal, you)

I said that you are assumed to be competent at programming in
Java.

i.e. you can write code.

How do you know when you’ve written good code?

Context (personal, you)

I said that you are assumed to be competent at programming in
Java.

i.e. you can write code.

How do you know when you’ve written good code?

Context (personal, me)

The topic of good code, and how people learn to write it, has been
on my mind a lot lately... my book

came out last year

Context (discipline)

Coding

Programming

Software engineering

... overlaps? differences? connotations?

increasing responsibility; increasing awareness of big picture

Context (discipline)

Coding

Programming

Software engineering

... overlaps? differences? connotations?

increasing responsibility; increasing awareness of big picture

Good programs

1. do what they are supposed to do (are correct)

2. are clearly written

But what do these mean, and why are they important? How can
we tell? How can we ensure them? Are other qualities important?

Correctness

well, if the code doesn’t do what it’s supposed to, it may be
useless (or worse).

I $64K question: correct with respect to what?

I specification...

I contracts (more later)

I what about users’ actual needs?

Verification: have we built the software right?
Validation: have we built the right software?

Key difficulty: any other artefact, with respect to which the code is
supposed to be correct, may itself be “incorrect”.

Agile as a “back to basics” movement

Coding may be a small part of what a typical software engineer
spends their time doing...

... but it’s the code that actually runs in the end, so it has to be
good

... and maybe software engineers ought to spend of their more
time coding?

More on agile later, but for now, how does agile handle
correctness?

Agile as a “back to basics” movement

Coding may be a small part of what a typical software engineer
spends their time doing...

... but it’s the code that actually runs in the end, so it has to be
good

... and maybe software engineers ought to spend of their more
time coding?

More on agile later, but for now, how does agile handle
correctness?

Agile as a “back to basics” movement

Coding may be a small part of what a typical software engineer
spends their time doing...

... but it’s the code that actually runs in the end, so it has to be
good

... and maybe software engineers ought to spend of their more
time coding?

More on agile later, but for now, how does agile handle
correctness?

Agile as a “back to basics” movement

Coding may be a small part of what a typical software engineer
spends their time doing...

... but it’s the code that actually runs in the end, so it has to be
good

... and maybe software engineers ought to spend of their more
time coding?

More on agile later, but for now, how does agile handle
correctness?

Tests as specification

I tests as specification

I Test-Driven Development (TDD)

Tests for all production code, always up to date, is a part of
“agile” that tends to get left out. It’s hard.

Requirements still change. When they do, tests and production
code have to change.

Key challenge: make change cheaper.

Key element: clearly written code.

Tests as specification

I tests as specification

I Test-Driven Development (TDD)

Tests for all production code, always up to date, is a part of
“agile” that tends to get left out. It’s hard.

Requirements still change. When they do, tests and production
code have to change.

Key challenge: make change cheaper.

Key element: clearly written code.

Tests as specification

I tests as specification

I Test-Driven Development (TDD)

Tests for all production code, always up to date, is a part of
“agile” that tends to get left out. It’s hard.

Requirements still change. When they do, tests and production
code have to change.

Key challenge: make change cheaper.

Key element: clearly written code.

Clearly-written code

Often seen – by the inexperienced! – as unimportant.

But the code–human interface is as important as the
code–computer one, because of this need for change.

Clearly-written = Easy to change when necessary

I layout

I conventions, e.g. capitalisation

I consistency, in general, e.g. about how errors are handled

I names

I structure

Local improvements

You can improve code a lot by looking at just what’s in front of
you and optimising that...

... but sometimes you need a more bird’s eye view. E.g. if you
want to rename a class, what captures what it means to every
client?

Sometimes high-level conventions and frameworks help.

Sometimes you need a way to get high-level structure into a
human’s head, and that means...

MODELLING

Local improvements

You can improve code a lot by looking at just what’s in front of
you and optimising that...

... but sometimes you need a more bird’s eye view. E.g. if you
want to rename a class, what captures what it means to every
client?

Sometimes high-level conventions and frameworks help.

Sometimes you need a way to get high-level structure into a
human’s head, and that means...

MODELLING

