Lab assessment for Software Design and
Modelling

Week 6, Semester 1, 2019

Introduction

This assessment is to be done individually on your DICE machines during the
lab session, making use of the tools you have used in the lab sessions so far.

In order to be able to give students with schedules of adjustments extra time,
the exercise has been designed to be done in 75 minutes. Those given extra time
in exams may use the remaining time, according to their usual arrangements.

The assessment will be marked out of 20. It is in three parts.

e Part A is worth 10 marks, and is intended to take no more than 30 minutes,
provided you understand the work and the tools well.

e Part B is worth 6 marks. You are advised not to work on it until you are
confident that you have done Part A well. It is intended to take no more
than 30 minutes for those who understand the work and the tools very
well, but might take up to 45 minutes with a few false steps.

e Part C is worth 4 marks. It is intended to challenge those students who
find parts A and B easy and do them fast. Don’t worry if you don’t get
to it: as you see, a first-class mark can be obtained without attempting
it. You are advised not to attempt it unless and until you feel you have
done Parts A and B very well.

To submit

Some questions ask you to submit specific files. To do this, use a terminal,
navigate to the directory containing the file, and use examsubmit to submit it,
e.g.

examsubmit Foo.java

Others ask you to submit your entire Eclipse project. To do this, in Eclipse,
use menu File — Export — General — Archive file. (NB do not use a Papyrus-
specific export menu!) Use the Select All button to select all your files. (It does
not matter if some of them are irrelevant.) Use the Browse button to choose
where to save your archive; be sure to give it the required name. Then use
examsubmit to submit it, as above, e.g.

examsubmit Al.zip

Part A

1. Create a Papyrus project called A1l containing a UML class diagram. Use
“basic primitive types” (not ecore types): leave the corresponding
box ticked when you create your Papyrus project. Show the following:

(a) An interface MainCourse, with operation getPrice taking no argu-
ment and returning an integer;

(b) A class Topping with private attribute description of type String

(¢) A class Pizza;

(d) An aggregation between Pizza and Topping, showing that a Pizza
may contain some Toppings;

(e) Multiplicities indicating that a Pizza may be linked to any number
of Toppings, while a Topping is linked to exactly one Pizza;

(f) That the class Pizza realizes the interface MainCourse (using an
appropriate kind of line, not a ball/lollipop).

For full marks, ensure that the contents of your model are apparent in
your diagram: for example, make sure that the operation in MainCourse
is displayed.
Export your project as Al.zip as described above. Submit A1l.zip.

[6 marks]

2. Consider the following sequence diagram, concerning the implementation
of getPrice() in a class Burger which also implements MainCourse. Add
code to the provided file Burger.java to make it consistent with the
sequence diagram.

Note: because interface MainCourse and class Drink are not provided,
your class Burger will have errors if you compile it. Do not worry about
this. Try to make your own Java code correct, however.

%' b : Burger ' d : Drink

getPrice()

rhyBird()
? aa

v
|
|
i
i
i
]
|
i
i
i
i
|
t
|
i

-:E
G
alt
getLowPrice()
[e]
heck\alidr
N : I"adc't =
walai
drinkPric
<o e |
I
[else :
getStandardPrice() .
-
drinkPri
<. O i oA
‘.
add drinkPrice to basePrice I I
and return the sum :
< :
price]
Submit Burger.java.
[4 marks]

Part B

Using Papyrus, and calling your project B, draw a UML activity diagram rep-
resenting the pizza chef’s process:

1. make the pizza base;
2. add each topping in turn, until there are no more toppings to add;

3. cook the pizza.

Use opaque actions, and use opaque expressions in natural language (not in
OCL). Include initial and final nodes.
[6 marks]

Export your project as B.zip as described above. Submit B.zip.

Part C

Your answers to Part C should be typed into a text file called C.txt.

1. Write, in the context of class Pizza, an OCL constraint on pizza p ex-
pressing that p is a mushroom pizza.

(Assume that the description attribute of Topping expresses what the
topping is. Assume that cheese and tomato sauce are not represented as
toppings, so that any Topping on a mushroom pizza should have “mush-
room” as the value of description.)

[2 marks]

2. Considering the pizza class diagram as the conceptual model for an online
pizza ordering system, what are the most significant problems you see
with it (apart from its incompleteness)? Can you suggest improvements?
Write no more than 50 words. [2 marks]

Submit file C.txt.

Summary

If you did every part of this assessment, the files you should have submitted are:
e Al.zip
e Burger.java
e B.zip
o C.txt

Later submissions override earlier ones, so if in doubt, resubmit.

