
Contracts and Interaction Design

Perdita Stevens

School of Informatics
University of Edinburgh



Plan

1. Contracts and Design by Contract

2. Command-Query Separation

3. Law of Demeter

4. Fluent Interfaces



Contracts

In ordinary life, a contract lays out an agreement between two (or
more) parties: what are each party’s obligations and rights?

Two benefits:

I Avoid misunderstanding: making obligations explicit increases
chance that they will be met;

I Assign blame: if an obligation is not met, the terms of the
contract should make it clear who is at fault.



Contracts in software design

Term Design by Contract introduced (and trademarked!) by
Bertrand Meyer.

By making explicit the contract between supplier of a service and
the client, D by C

I contributes to avoiding misunderstandings and hard-to-track
bugs;

I supports clear documentation of a module – clients should not
feel the need to read the code!

I supports defensive programming;

I allows avoidance of double testing.

Software contracts may be tool-supported and checked, or purely
for human reading.



Design by contract

says: there should be explicit contracts attached to the
responsibilities a class exists to fulfill.

A method has:

I a precondition – this must be true when the method is
invoked, or all bets are off

I a postcondition – the method promises to ensure this,
provided its precondition was met

A class has:

an invariant, which it must maintain.



Subcontracting

When a subclass reimplements an operation it must fulfill the
contract entered into by its base class – for substitutivity. A client
must not get a nasty surprise because in fact a subclass did the job.

Rule of subcontracting:

Demand no more: promise no less

It’s OK for a subclass to weaken the precondition, i.e. to work
correctly in more situations... but not OK for it to strengthen it.

It’s OK for a subclass to strengthen the postcondition, i.e. to
promise more stringent conditions... but not OK for it to weaken it.



Understanding the role of LSP

Remember, the Liskov Substitution Principle was an attempt to
say when subclassing was safe without having explicit contracts.

Effectively, to obey the LSP, a subclass must obey whatever
contract for the superclass is in the client’s mind – any property of
the superclass must also hold of the subclass. This is why LSP is
too strong to expect it to hold in all good designs (but the best
you can do, without making contracts explicit).



Constraints in a UML model

Constraints allow you to give more information about what will be
considered a correct implementation of a system described in UML.

Specifically, they constrain one or more model elements, by giving
conditions which they must satisfy.

They are written in an appropriate language, enclosed in set
brackets {...} and attached to the model in some visually clear way.



Constraining implementation of a class (1)

A class invariant restricts the legal objects by specifying a
relationship between the attributes and/or the attributes of
associated classes.

Simple example: the class invariant

{name is no longer than 32 characters}
could be applied to a class Student which has an attribute

name : String

to forbid certain values of that attribute.

Implementors of the class must ensure that the invariant is
satisfied (when?)

Clients of the class may assume it.



Constraining implementation of a class (2)

Suppose our class Student is associated with classes
DirectorOfStudies and also with Lecturer by tutor – a student has
a DoS and a tutor.

Suppose it is forbidden for the student’s DoS and tutor to be the
same person.

We can represent this by a class invariant on Student, say

{ student’s tutor and DoS are different }
(Is this sufficiently unambiguous?)



Constraining implementation of an operation

We can constrain the behaviour of operations using pre and post
conditions.

A pre condition must be true before the operation is invoked – it is
the client’s responsibility to ensure this.

A post condition must be true after the operation has been carried
out – it is the class’s implementor’s responsibility to ensure this.

E.g.

context Module::register(s : Student)

pre: s is not registered for the module
post: the set of students registered for the module is whatever it
was before plus student s.



What contracts are good for
At the beginning we claimed that the use of contracts:

I contributes to avoiding misunderstandings and hard-to-track
bugs; because assumptions and promises are explicit: if all
contracts are explicit and dovetail nicely, the bug is in the
code that doesn’t fulfil its contract

I supports clear documentation of a module – clients should not
feel the need to read the code! reading the contract should be
enough

I supports defensive programming; e.g., when you implement an
operation, verify that the postcondition holds before
returning; o/w fail gracefully and report a bug

I allows avoidance of double testing. e.g., when you implement
an operation, you need not test that your preconditions are
satisfied: that’s the job of the client to ensure. (Defensively,
you may wish to anyway: defensiveness/performance
trade-off.)



Languages for contracts

Writing contracts in English can be

I ambiguous

I long-winded

I hard to support with tools

– but nevertheless, careful English is very often the best language
to use! Using it certainly beats using a formal language that
people who need to read it can’t read!



Formal languages for contracts

If English is not good enough, you could consider:

I the chosen programming language – e.g. write a Boolean
expression in Java that should evaluate to true.
+ can be pasted into the implementation and checked at
runtime
− may be too low level, e.g. lack quantifiers

I “plain” mathematics and/or logic
+ don’t need any special knowledge or facilities
− can end up being the worst of all worlds, e.g. unfamiliar,
lacking UML integration

I a formal specification language e.g. Z or VDM
+ can be truly unambiguous, some tool support exists
− unfamiliar to most people, may be non-ASCII, need special
UML-integrated dialect

I The Object Constraint Language, OCL, which you have met.



About OCL

OCL aimed for the sweet spot between formal specification
languages and use of English. It tries to be formal but easy to
learn and use.

Extensively used in the documentation of the UML language itself,
and related standards.

Written in plain text (no funny symbols).

Had serious semantic problems, but these seem to be solved now.

Some tool support.

Worth knowing a bit about.



Command-Query Separation

Term also coined by Bertrand Meyer (like DbC) and goes well with
it.

Separate:

I commands, which may change an object’s state

I queries, which return a value.

Then queries can be freely used in contracts – running them does
not change anything! In UML operations can be given a {query}
property when they guarantee not to change anything, and this is
what allows you to use them in constraints.

Can be bent (think about it!) – the value comes from queries not
changing state, rather than from commands not returning values.
Advantage of following it strictly: it’s easy to do! Disadvantage:
coming up after...



Law of Demeter

in response to a message m, an object o should send messages
only to the following objects:

1. o itself

2. objects which are sent as arguments to the message m

3. objects which o creates as part of its reaction to m

4. objects which are directly accessible from o, that is, using
values of attributes of o.

In particular o should not send a message to an object which is
acquired by sending another message e.g.

myP.getThing().doSomething(); //violates LoD



Law of Demeter

in response to a message m, an object o should send messages
only to the following objects:

1. o itself

2. objects which are sent as arguments to the message m

3. objects which o creates as part of its reaction to m

4. objects which are directly accessible from o, that is, using
values of attributes of o.

In particular o should not send a message to an object which is
acquired by sending another message e.g.

myP.getThing().doSomething(); //violates LoD



Why is the LoD not “the one dot rule”?

You can see the attraction: LoD tries to rule out code like:

myP.getThing().doSomething();

Some code violates LoD without having more than one dot on a
line:

Thing t = myP.getThing();

t.doSomething();

More interestingly some has more than one dot on a line and does
not violate it: e.g. if an object returned from a message was
already accessible.

Let’s look at the rationale behind LoD, rather than the mechanics.



Rationale

The Law of Demeter tries to avoid indirect dependencies of one
class on another, which may be hard to spot from code or models.

E.g. if class OClass has an attribute myP of class P, it is clear from
the source of OClass that it depends on P. If P changes, we will
easily discover that we have to check whether OClass needs to
change.

But if P has a method getThing() returning an object of class
Thing and o calls this and sends the resulting Thing a message,
now OClass depends on Thing.

This may not be readily apparent from OClass’s code or a
corresponding UML diagram. That’s the problem.



Setting where LoD helps avoid design problem

EverythingController

getJC(j:Job) : JobController
1

JobController

1

Job

1

0..*

0..*0..*

(names slightly changed to protect the guilty)



But the LoD must not be followed slavishly...

There are several situations where even a good design will disobey
the LoD, and we detect them by understanding the rationale for it.

Suppose my code goes:

myP.getThing().doSomething();

First: if I already depend on the class providing doSomething(),
no harm is done.

Second: if I can’t modify myP’s class (to make its API more
complete and offer me the service I’m accessing this way), I may
have no good alternative.

Indeed, the purer the OO language the more likely it is that there’s
no point in a method returning something if you can’t
subsequently sent it a message!

E.g. where a method returns a String.



Example

Suppose we are responsible for classes O, P and Thing.

public class OClass {

private P myP;

public void m(String s) {

Thing th = myP.getThing(); //ok, attribute

P p = new P();

Thing newth = p.getThing(); //ok, object created here

int sl = s.length(); //ok, argument

String t = this.n(); //ok, object itself

int tl = t.length(); //technically not ok

int tl2 = this.n().length(); //technically not ok

myP.getThing().doSomething(); //really not ok

}

public String n() {...return someString;}

}



Example

Suppose we are responsible for classes O, P and Thing.

public class OClass {

private P myP;

public void m(String s) {

Thing th = myP.getThing(); //ok, attribute

P p = new P();

Thing newth = p.getThing(); //ok, object created here

int sl = s.length(); //ok, argument

String t = this.n(); //ok, object itself

int tl = t.length(); //technically not ok

int tl2 = this.n().length(); //technically not ok

myP.getThing().doSomething(); //really not ok

}

public String n() {...return someString;}

}



Example

Suppose we are responsible for classes O, P and Thing.

public class OClass {

private P myP;

public void m(String s) {

Thing th = myP.getThing(); //ok, attribute

P p = new P();

Thing newth = p.getThing(); //ok, object created here

int sl = s.length(); //ok, argument

String t = this.n(); //ok, object itself

int tl = t.length(); //technically not ok

int tl2 = this.n().length(); //technically not ok

myP.getThing().doSomething(); //really not ok

}

public String n() {...return someString;}

}



Example

Suppose we are responsible for classes O, P and Thing.

public class OClass {

private P myP;

public void m(String s) {

Thing th = myP.getThing(); //ok, attribute

P p = new P();

Thing newth = p.getThing(); //ok, object created here

int sl = s.length(); //ok, argument

String t = this.n(); //ok, object itself

int tl = t.length(); //technically not ok

int tl2 = this.n().length(); //technically not ok

myP.getThing().doSomething(); //really not ok

}

public String n() {...return someString;}

}



Example

Suppose we are responsible for classes O, P and Thing.

public class OClass {

private P myP;

public void m(String s) {

Thing th = myP.getThing(); //ok, attribute

P p = new P();

Thing newth = p.getThing(); //ok, object created here

int sl = s.length(); //ok, argument

String t = this.n(); //ok, object itself

int tl = t.length(); //technically not ok

int tl2 = this.n().length(); //technically not ok

myP.getThing().doSomething(); //really not ok

}

public String n() {...return someString;}

}



Example

Suppose we are responsible for classes O, P and Thing.

public class OClass {

private P myP;

public void m(String s) {

Thing th = myP.getThing(); //ok, attribute

P p = new P();

Thing newth = p.getThing(); //ok, object created here

int sl = s.length(); //ok, argument

String t = this.n(); //ok, object itself

int tl = t.length(); //technically not ok

int tl2 = this.n().length(); //technically not ok

myP.getThing().doSomething(); //really not ok

}

public String n() {...return someString;}

}



Example

Suppose we are responsible for classes O, P and Thing.

public class OClass {

private P myP;

public void m(String s) {

Thing th = myP.getThing(); //ok, attribute

P p = new P();

Thing newth = p.getThing(); //ok, object created here

int sl = s.length(); //ok, argument

String t = this.n(); //ok, object itself

int tl = t.length(); //technically not ok

int tl2 = this.n().length(); //technically not ok

myP.getThing().doSomething(); //really not ok

}

public String n() {...return someString;}

}



Example

Suppose we are responsible for classes O, P and Thing.

public class OClass {

private P myP;

public void m(String s) {

Thing th = myP.getThing(); //ok, attribute

P p = new P();

Thing newth = p.getThing(); //ok, object created here

int sl = s.length(); //ok, argument

String t = this.n(); //ok, object itself

int tl = t.length(); //technically not ok

int tl2 = this.n().length(); //technically not ok

myP.getThing().doSomething(); //really not ok

}

public String n() {...return someString;}

}



What should a method return?

Conventionally, many OO methods return void. Their job is to
change some state, not to compute a result. They are commands,
e.g. modifiers.

In strict Command Query Separation any method either changes
state, or returns a value, but not both. (“Asking a question should
not change the answer.”)

Advantages include: then all non-void-returning methods can be
used in OCL constraints, because they’re all queries!

But there are disadvantages to this separation, not least that it can
lead to repetitious code:

customer.setFirstName(‘‘John’’);

customer.setLastName(‘‘Bloggs’’);

customer.setAge(32);



Method chaining

If modifiers return themselves – their code ends with return

this; – we can write instead:

customer.setFirstName(‘‘John’’)

.setLastName(‘‘Bloggs’’)

.setAge(32);

and sometimes this is a win.

In the pure form this does not violate LoD (why?)

Fluent interfaces go further and often do violate LoD, in order to
gain advantages of, well, fluency. Moving towards the design of an
internal domain-specific language



Conclusion

The great thing about design principles and patterns is that there
are so many to choose from.

You cannot, and should not, try to follow them all at all times.

Try to be aware of what underlies them, and use them as a guide
where appropriate. Often reading discussion of them, and of how
they reinforce or conflict with, one another, is illuminating.


