
Lab assessment for Software Design and Modelling

Week 6, Semester 2, 2024

� This assessment is to be done individually, making use of the tools you have used in the lab
sessions so far.

� It is open-book: you may consult the course material and any online source you have found useful.
However, you may not collaborate with one another or with anyone else, and you may not use
any tool – including any AI-based tool – other than those specified in the questions.

� Please remember the good scholarly practice requirements of the University regarding work for
credit. You can find guidance at the School page

https://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

which also has links to the relevant University pages. Please do not publish solutions to these
exercises on the internet or elsewhere, until I tell you you may.

� The exercise has been designed to be done in 75 minutes. Those given 25% extra time in exams
may use 94 minutes, according to their usual arrangements.

� The assessment will be marked out of 100. It is in three parts.

– Part A is worth 50 marks: all students should attempt it.

– Part B is worth 30 marks: all students should attempt it.

– Part C is worth 20 marks. It is intended to challenge those students who find parts A and B
easy and do them fast. Don’t worry if you don’t get to it: as you see, a first-class mark can
be obtained without attempting it. You are advised not to attempt it unless and until you
feel you have done Parts A and B very well. It will not be marked unless your Parts A
and B have already earned you at least 70 marks, i.e., a first-class mark.

To submit

Each question tells you what to submit, giving a filename and format, e.g. A.pdf. Save your files locally.
Then when you are ready to submit, make a zip file called done.zip, containing them all at top level,
e.g. using DICE command:

zip done.zip A.pdf B1.pdf B2.pdf C.pdf

and upload it using the button in the question where you got this paper. Use exactly the names and
formats specified, otherwise you may lose marks.

1



Part A

A class WasherDryer implements the controlling software for a washer-dryer: that is, for a machine
which can automatically wash clothes, followed if the user desires by automatically drying them. A
class Programme is concerned with the different washing and drying programmes that a user can se-
lect – delicates, cottons and linens, etc. You may assume that there is a navigable association from
class WasherDryer to class Programme, with role-name selected-programme, and multiplicity 1, at the
Programme end.

1. In LucidChart, using its UML shapes, draw a nested UML state diagram for a class WasherDryer
showing:

� Two high-level states Washing and Drying

� That the initial state of an instance of WasherDryer is Washing

� Within the state Washing, the washing process does first Wash, then Rinse, then Spin.

� On completion of the washing process, if the dry attribute of the selected programme has
value true, and the weight attribute of WasherDryer is less than 6, the machine should
perform the action start-dry and enter the Drying state; otherwise, show that the object
does no action and its life is finished. Use OCL for the guard.

� If the instance receives the event programme-finished, from any state, show that the object’s
life is finished.

(40 marks)

2. Add a Note to your UML state diagram. In it, write an OCL class invariant (in full, not just the
OCL expression itself), to specify that for any valid instance of WasherDryer, the value of the
attribute weight must be less than 10; and that, if the dry attribute of the selected programme is
set to true, then weight must be less than 6. (10 marks)

Export your diagram as A.pdf

2



Part B

In LucidChart, using its UML shapes, draw two class diagrams to illustrate different early drafts of ways
to implement WasherDryer:

1. In a diagram which you export as B1.pdf show the class WasherDryer being a specialisation
both of a class Washer, and of a class Dryer. Show that the class Washer has a public method spin

which takes one integer argument and returns no result, and a private integer attribute weight.

(Note: in this part, for simplicity, we have deliberately left out Programme.)

2. In a diagram which you export as B2.pdf show that each object of class WasherDryer contains
one object of class Washer, and one object of class Dryer. Use composition, with the appropriate
notation. Add a class Programme, and show both:

� that there is a navigable association from class WasherDryer to class Programme, with role-
name selected-programme, and multiplicity 1, at the Programme end;

� that a WasherDryer provides at least 4 Programmes.

(30 marks)

3



Part C

REMINDER: This part is intended for students in the upper reaches of the University Standard
Marking Scale. It is aimed at students who have found Parts A and B easy and done them quickly. It
will only be marked if your answers to Parts A and B have already secured you a first-class mark! So
you are strongly advised not to attempt it until you are sure you have done as well as you can on Parts
A and B.

You may write your answer in any text editor or word processor, and submit it either as a plain text
file, C.txt, or as a PDF file, C.pdf, as you prefer. Please do not submit in any other format.

1. Consider the two class diagrams you drew in Part B. Comment briefly on the design decisions they
incorporate. In particular, say whether you think specialisation, as in B1, or composition, as in
B2, is the more promising approach, and why.

Note: you may assume that Programme would be treated the same way in either case, even though
– to avoid duplication of effort – you were only asked to include it in one of the diagrams in Part
B.

(5 marks)

2. This question concerns the formal definition of modelling languages, and involves a feature of UML
that you have (probably) not considered before. You must answer it using the UML2.5.1 Specifi-
cation (as a reminder, it can be found at https://www.omg.org/spec/UML/2.5.1/About-UML).

Consider the following class diagram, which differs from most of those you have previously seen in
having black blobs at some association ends.

Study the UML specification to find out what the blobs mean.

(a) Give the page number of the place in the specification where you found the relevant
information. Note that the required page number is the one printed at the bottom of the
page, opposite the text “Unified Modeling Language 2.5.1” – not the page number shown by
your PDF reader.

(b) Write a brief explanation of what the blobs mean. Use your own words, but also quote a
relevant sentence (or more) from the UML specification.

(c) Illustrate your answer by giving the simplest possible Java implementation of classes Edge
and Node consistent with the diagram, and stating what, in your implementation, has been
forced by the blobs.

(d) Finally, state how the diagram above differs from the UML diagram you might more usually
expect to see modelling your Java implementation. Comment on your answer – e.g., why do
you imagine such blobs have not been prominent in the UML examples you have seen in this
course?

(15 marks)

4



Finally: submission

If you have done all parts of the lab assessment you will have files to submit as follows:

� A.pdf

� B1.pdf

� B2.pdf

� C.txt or C.pdf (if you did Part C)

Now create a single zip file called done.zip containing all the files you wish to submit. On DICE the
command to do this is

zip done.zip A.pdf B1.pdf B2.pdf C.pdf

– adjust in the obvious way for files you have/have not created.
Upload it using the button in the question where you got this paper. Use exactly the names and

formats specified, otherwise you may lose marks.
After you have submitted you may leave, quietly.

5


