
UML big picture

Perdita Stevens

School of Informatics
University of Edinburgh



Plan

I History of UML (quick reminder)

I Parts of UML

I How it all fits together

I UML as a language

I Consistency: what does it mean, do we need it?

I Defining UML

I Metamodelling



Whence UML?

Recall: 1980s/early 90s: explosion of OO

Plethora of gurus, each with own company, tool, book, modelling
notation

including Booch, Rumbaugh, Jacobson, the “three amigos” who
originated UML, the Unified Modeling Language... ...and Coad,
Odell, Schlaer and Mellor, Wirfs-Brock...



Standardisation controversy

Journal of Object Oriented Programming, vol 6 no 4, July-August
1993, includes both:

I a guest editorial by Jacobson entitled “Time for a cease-fire in
the methods war”;

I an Open Letter to the Industry entitled “Premature methods
standardization considered harmful”, signed by 8
methodologists (but not Jacobson)



Resolution

1994: Rumbaugh joined Booch at Rational (Booch’s company,
since bought by IBM).

“The methods war is over: we won” said Booch and Rumbaugh.

1995: proposal for a Unified Method. Jacobson joined them at
Rational.

OMG pulled the community together into standardising UML 1997
UML1.0... March 2015, UML2.5...

Persistent issues around what “standardising” should mean: how
standard, how formal?



Parts of UML

Parts of UML you now know about:

I Use case diagram: summarise requirements

I Class diagram: static structure

I Sequence diagrams: how objects interact (inter-object
behaviour)

I State diagrams: how an object’s state changes when it
receives messages (intra-object behaviour)

I Activity diagrams: workflow; how activities are organised.



The rest of UML

Several other diagram types we don’t cover, including:

I Three other kinds of interaction diagrams! (Sequence
diagrams are the most useful, and I reckoned one was
enough.)

I Deployment diagrams, to show how processes in the eventual
system are deployed to hardware.

I Package diagrams, to show how the overall system and its
namespace is organised.

Object Constraint Language: a textual language for constraints,
i.e. expressions that may be true or false in a context.

Facilities for defining profiles, i.e. variants of UML for particular
domains: may be briefly mentioned later.



You don’t need to use it all!

No project uses all of UML; many users only ever use a small
subset, e.g., just class diagrams and sequence diagrams.

Depends on needs of project: e.g., embedded system development
often uses state diagrams extensively, business software
development seldom needs them.

(Several recent papers have investigated what parts of UML are
used how much, but they use convenience samples...)

We’ll come back at the end of the course to talk about how the
available tools influence modelling.



Consistency

A source of confusion and bugs is different diagrams/documents
contradicting one another.

A set of diagrams is consistent if there is at least one way to
implement a system that they all describe.

E.g. classes and operations mentioned in a sequence diagram had
better also occur in the class diagram.

This is embedded in the definition of the modelling language: an
inconsistent set of diagrams will not constitute a legal model (just
as a Java “program” that doesn’t compile isn’t really a Java
program).



UML as language

A language, which can be considered a set of possible utterances,
has:

I syntax: is an utterance part of the language? (Legal,
grammatical.)

I semantics: what does a legal utterance mean?

I pragmatics: what conventions do people use, e.g. which of
the legal utterances seem most natural?



UML syntax

Rules of diagrams, such as you’ve been learning.

Defined in the UML standard using metamodelling. This is
(largely) automatable: tools can and to some extent do check that
your UML diagram is legal UML.

(“largely” and “to some extent” because some of the rules are
complicated, and many are not checked in any tool)



UML semantics

Think of a diagram as a statement about a system.

The job of UML semantics is to explain what a diagram says about
the system.

Typically infinitely many software systems could be described by a
given diagram – e.g., class diagram says what classes there are and
what operations they offer, but says nothing at all about what
those operations do.

Defined in the UML standard using English. Huge mountain of
work on formal semantics, motivated by desire to provide better
tools.



UML pragmatics

Covers how UML is typically used; which varies between contexts.
You’ve heard me talk about “what people usually do”.

Example: layout of class diagrams has no meaning in UML, but
people arrange them with the most important classes in the
middle, with as few crossing lines as they can manage, with
generalisation arrows going up, with a preference for association
names to be read from left to right.

Language designers may think they can ignore pragmatics, but
sometimes not: e.g., need to record diagram layout if models are
to be portable between tools in practice.



How to define syntax of a graphical language

We have to give abstract syntax, i.e.

I what the parts are (what kinds of model element are there?
e.g. Class, Association, Generalization...)

I how they can be related (e.g. you might specify that any
Generalization must have a Class which is its supertype and a
Class that is its subtype)

I what the restrictions are (e.g., no Class can be connected to
itself by a chain of Generalizations).

and concrete syntax: how is all this represented graphically?

(Class represented by rectangle, Generalization by triangle-headed
line, the triangle connected to the supertype Class and...)



Metamodelling

Defining the abstract syntax of a modelling language is very similar
to describing the objects and their relations in an OO system!

“This model is correct in the modelling language”

is a very similar question to

“This collection of interlinked objects is described by this class
diagram”

So we can define UML’s abstract syntax in UML... or better, in a
small subset of UML... or better, in MOF (Meta Object Facility).



MOF

Meta Object Facility

Standardised by OMG in order to help with the definition of the
abstract syntax of UML.

Think of it as a small subset of UML class diagram notation:
includes classes, attributes, associations, generalization.

Sufficient to express the metamodel of a real modelling language:
simple enough to be shared by many modelling languages and form
the basis of technology for model repositories, transformations etc.

Warning: this is a simplified story – the actual relationship between MOF and
UML is now somewhat incestuous! We will see a bit more about language
definition later in the context of domain-specific modelling languages, when
we’ll talk about the OMG 4 level Metamodel Hierarchy.



Advantages of metamodelling

I Reasonably understandable, yet reasonably precise, definition
of abstract syntax

I Helps structure tools

I Makes it possible to define other modelling languages using
the same metamodelling language... on to domain-specific
modelling languages, model-driven development etc.


