
Security Engineering
Modern operating systems security 1. Trusted code base. Use of MAC

in SELinux and phones. Android, iOS and Windows security
mechanisms, both in theory and practice.

Definitions

• Trusted Code Base: Components (hw/sw/human) whose
correct function sufficient to ensure the security policy is
enforced / whose failure can breach security policy.
• Reference monitors: Mediate access control & be small

enough for complete analysis
• Safety integrity levels: a more dependable system must not

rely on a less dependable one!

Discretionary Access Control

Discretionary Access Control: ACLs

• Access Control Lists: store permissions with file. May need
different permissions for different programs, so actually a
(user, file, program) triple
• ACLs scale badly without RBAC.
• Finding all the files a user has access to is a massive pain.

Unix Access Control Lists

• In Unix (and thus Linux, Android, iOS…): rwx attributes, with
owner,group,world, per file. Can have richer Posix extended ACL
extension.
• Sysadmin can do anything!

Unix Access Control Lists

• User part of multiple groups.

Unix Access Control Lists

• User part of multiple groups.

Unix Access Control Lists

• Not directly a (user,program,file) triple: gets simplified down
to setuid and setgid bits, and (user,file).
• The triple (user,program,file) is only implemented indirectly

by setuid. Fiddly and error-prone. Leads to suid root...

Discretionary Access Control: Capabilities

• Capabilities: store per user, not per file.
• Finding all the users who have access to a file is a pain.
• Hard to revoke access to a particular file, or produce evidence of who

could have broken said file.
• Easily transferred
• Public key certificates are really capabilities.

Mandatory Access Control

DAC vs MAC

• DAC: Start in supervisor mode, and as admin, can make less
privileged accounts available for less trusted tasks.
• MAC: sysadmin no longer the boss: ultimate control rests with the

security policy (possibly set by remote govt authority in defence
setting).

• Alternate view (Android): DAC requires permission of the user. MAC
requires consent of user, developer AND platform -- 3-party consent.

Mandatory Access Control (MAC)

• Occasionally synonymous with MLS - Multi-Level Security
(Unclassified, Confidential, Secret, Top Secret)
• Enforced by system policy, not by user discretion!
• Traditionally for military systems, e.g. Bell LaPadula

Bell LaPadula
•Simple Rule (No Read Up): A subject at a given
security level may not read an object at a higher
security level.
•* Property: (No Write Down): A subject at a given
security level may not write to any object at a lower
security level.

Mandatory Access Control: BIBA

• BIBA: Uses the opposite duality of confidentiality and integrity and
thus reverses BLP -- low water mark: integrity of an object is the
lowest level of all the objects that contributed to its creation
• Used in Windows (partially): see later.

BIBA
•Simple Rule (No Write Up): A subject at a given
security level may not write to an object at a higher
security level.
•* Property: (No Read Down): A subject at a given
security level may not read from any object at a lower
security level.

MAC Today

• The military mostly gave up on BLP systems, because they
were riddled with Covert Channels
• In military systems, tend to now use system-high: every

system just at one level, with airgaps implemented by
firewall. Multiple Independent Levels of Security (MILS).
• Linux/Windows: Mostly discretionary access control

schemes. But, some ideas inspired by MAC: especially in
SELinux, used in Android (see later).

Other Forms of MAC

• Bring-Your-Own-Device Management: Not just Samsung
Knox: also Office 365 and permissions changes on Android.
This gives 4-party consent
(user,developer,platform,company).
• DRM also a form of mandatory access control: stopping a

subscriber (Top Secret) sharing with a non-subscriber
(Unclassified).
• Trusted Boot: See next time

Case Study 1: Android

Android Discretionary Access Control

• Based on Linux
• App Isolation: Treat Apps by different companies as

different users, using SETUID.
• Permissions also effectively capabilities, implemented by

adding GIDs to the list of groups of the SETUID. “Permissions
manifests” basically compile down to this.
• Early versions: all granted at install time. So flashlight apps

started demanding your address book at install time so they
could sell it.
• Since Android 6, Google moved to Apple model of TOFU, but

earlier apps still demand on installation.

Android Mandatory Access Control: SELinux

• Consent of user, developer AND platform: 3-party consent.
• Protect core system functions, even from some parts of the

kernel.
• Can't solve all kernel attacks but provides some isolation.

Example: GingerBreak / GingerMaster

• Bug in vold, the external storage (SD card) manager
• Since vold runs as root, this allowed running a “root shell” and thus

“rooting” of the whole device.
• SELinux could have blocked in several places, despite vold being root:
1. Apps blocked from reading process ID of vold
2. Apps blocked from sending messages to vold
3. Vold blocked from executing non-system binaries
4. Root shell still only allowed same security id privileges as vold itself

Android Mandatory Access Control: SELinux

• Also provides some stronger defences than discretion in userland
• Assumed that users will be tricked into installing malicious apps

SELinux

• Implemented since Linux 2.6.
• Builds RBAC on top of Type Enforcement.
• Users -map> Roles at login, Roles -auth> Domains, Domains -

permission> types.
• Can handle integrity as well as confidentiality: allows roles to be

revised when programs invoked, e.g. can lose system-writing
privilege when running internet-downloaded software.
• Implements a general constraints engine that can express RBAC, TE

and MLS.
• E.g. can separate your DNS server from your web server.

Android Permissions: Issues

• API has poor documentation, and the permissions system is often the
enemy of the developer, who ends up requesting more permission
than they really need.
• Android still has malware! e.g. Pegasus via zero day, but costs $1

million. Alternative markets out of Google's control
• And lots of unpatched devices. The OS-update ecosystem is a

disaster…
• Getting access control right intersects with lots of awkward edge

cases, e.g. factory reset

Case Study 2: iOS

iOS

• Also a Unix derivative, via FreeBSD and Mach kernel.
• Domain and Type Enforcement for tamper-proof system

components. App permissions are capabilities, granted on
first use on consent.
• Signed ecosystem from the market, just as Android has its

default supported Google Play. Allows screening and also
revenue taking.
• On the App Store, Apple signs the binaries. On Google Play,

the developer does.

iOS

• Biometrics stored via encryption by the secure enclave (SE).
Neither iOS nor TrustZone are trusted with this data!
• Passcode 10 tries: file keys derived only then.
• Vertically integrated, closed ecosystem

Case Study 3: Windows

Windows Access Control Lists

• Very complex Access Control, from Windows NT onwards. RWX, but also Take
Ownership, Change Permissions and Delete.

Windows Access Control Lists

Windows ACLs

• Very complex Access Control, from Windows NT onwards.
RWX, but also Take Ownership, Change Permissions and
Delete.
• AccessDenied, AccessAllowed, SystemAudit: AD overrides

AA if set multiple times.

Windows App Permissions

• Not really integrated as a (user,program,file) triple – or even setuid.
• ACL just does (user,file), and a separate system handles a limited set

of permissions, mostly for “apps”

Windows Vista (2007)

• Remove most drivers from the kernel.
• UAC replaced default admin privilege with user-mode

default. In XP (2001) many routine tasks needed admin
privilege.
• Application Information Service to launch applications that

require elevated privilege, virtualizes them to give them an
imaginary registry to alter.
• Elevation prompts for admin privilege. ("ambient authority"

frowned upon where possible to avoid -- access should be
temporary -- sudo not root)
•Mandatory Integrity Control (see later)

Windows 8 (2012)

•Dynamic access control to give contextual control:
work vs home pc vs phone, in Active
Directory/Kerberos.
•8.1: Security Identifiers (SIDs) given on login.

Encouraged to sign in via Microsoft account,
authenticated remotely, and where credentials
stored locally, protected by virtualisation.
•Secure Boot to verify the boot sequence and

software all matches that from the OEM
•Pin Login

Windows 10 (2016)

•Windows XP: Ctrl-Alt-Del for login -- gone with
Windows 10 because nobody understood it.
•Multi-factor authentication support e.g. FIDO
•Device Encryption AKA Bitlocker Device Encryption

(not Bitlocker, that’s different) – encrypt files and
recover the key via Microsoft account.

Windows: Mandatory Integrity Control: BIBA?

• Adds an integrity level (Low, Medium, High, System)
• Standard users Medium, elevated users High, browsers Low
•When a file executed, object starts with the minimum

integrity level of (User, File)
• Files downloaded from the internet are therefore low,

assuming the browser is.

Windows: Mandatory Integrity Control: not
BIBA?

• NoWriteUp (simple rule) but no NoReadDown (* property).
• Things downloaded in IE can read most files, but not write to

them, to limit malware damage.
• Not really “mandatory”: have user confirmation instead to

upgrade downloaded content.
• Contrast with Android, which isolates each app to its own

domain.

Why is Windows so complicated?

• Corporate customers need complicated access controls. MS
made half its revenue from firms >25000 seats.
• Decades of backwards compatibility means testing at scale.

And introducing features slowly, and complex compatibility
layers e.g. Application Information Service

Further Reading

• Security Engineering Chapters 6, 9, 22, 27.
• Google SRS Chapter 5: Design for Least Privilege
• http://www.cs.columbia.edu/~lierranli/coms6998-

7Spring2014/papers/SEAndroid-NDSS2013.pdf
• https://docs.microsoft.com/en-

us/windows/security/information-
protection/bitlocker/bitlocker-device-encryption-overview-
windows-10
• https://docs.microsoft.com/en-

us/windows/security/information-
protection/bitlocker/bitlocker-overview

http://www.cs.columbia.edu/~lierranli/coms6998-7Spring2014/papers/SEAndroid-NDSS2013.pdf
http://www.cs.columbia.edu/~lierranli/coms6998-7Spring2014/papers/SEAndroid-NDSS2013.pdf
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-device-encryption-overview-windows-10
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-device-encryption-overview-windows-10
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-device-encryption-overview-windows-10
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-device-encryption-overview-windows-10
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview

